

Automazione Industriale e
Meccatronica III

Prof. Delbarba 02022026

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 2

INTRODUZIONE

Questo testo contiene una serie di lezioni ed esercitazioni che possono essere realizzate con

 il simulatore ThinkerCad disponibile sul sito https://www.tinkercad.com/

 il simulatore Wokwi disponibile sul sito https://wokwi.com/

 il simulatore CircuitJS disponibile sul sito https://www.falstad.com/circuit/circuitjs.html

 il simulatore SimulIDE disponibile sul sito https://www.simulide.com/p/home.html

 il simulatore NL5 lite disponibile sul sito https://sidelinesoft.com/nl5/index.php?page=download

 un foglio di calcolo (Excel, Calc …)

 un kit Arduino R1

I simulatori in oggetto permettono di programmare una scheda Arduino UNO e di risolvere semplici

problemi di automazione industriale utilizzando i più comuni componenti elettronici ed una serie di sensori

ed attuatori.

La maggior parte delle esercitazioni proposte contiene una breve descrizione dei componenti utilizzati.

Per ulteriori dettagli è necessario fare riferimento a testi specifici di elettronica ed automazione.

Una conoscenza di base dell’elettronica e dell’elettrotecnica è necessaria per capire gli schemi proposti.

Quasi tutti gli esercizi presentano una possibile soluzione software da caricare su una scheda Arduino.

Il vantaggio offerto dall’utilizzo di ThinkerCAD, rispetto ad altri software di simulazione, è la possibilità di

replicare in modo identico il circuito su una breadboard e di utilizzare lo stesso programma simulato sulla

scheda Arduino.

Questo testo può essere utilizzato liberamente SOLO PER SCOPI DIDATTICI.

Qualsiasi altro utilizzo deve essere concordato con l’autore e non può essere distribuito su altri siti web.

Il testo aggiornato periodicamente è reperibile a questo indirizzo web:

http://www.energiazero.org/cartelle.asp?dir=thinkercad

Si ringrazia in anticipo per eventuali segnalazioni di errori e/o miglioramenti apportabili al testo alla

seguente mail: energiazero.org@gmail.com

NOTA BENE:

Alcuni esempi e immagini sono stati reperiti sul web cercando materiale che non fosse coperto da

copyright. Si ringraziano tutti coloro che hanno reso disponibile il materiale.

Se per errore fosse stato inserito materiale protetto, cortesemente segnalatelo alla mail sopra citata.

https://www.tinkercad.com/
https://wokwi.com/
https://www.falstad.com/circuit/circuitjs.html
https://www.simulide.com/p/home.html
https://sidelinesoft.com/nl5/index.php?page=download
http://www.energiazero.org/cartelle.asp?dir=thinkercad
mailto:energiazero.org@gmail.com

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 3

SOMMARIO

INTRODUZIONE ... 2

⌂ il microcontrollore ... 12

La scheda Arduino UNO R3 .. 13

I pin di Arduino: digitali, PWM ed analogici .. 15

Microcontrollore industriale .. 16

Modulo relè WiFi ESP32-S3 industriale a 8 canali ... 16

Resistenza esterna di pull-up con MCU .. 20

Ingresso dell’MCU impostato ad INPUT-PULLUP. ... 21

LINGUAGGIO DI PROGRAMMAZIONE DI ARDUINO .. 22

LE VARIABILI .. 22

LE COSTANTI.. 22

LE STRUTTURE PRINCIPALI ... 22

STRUTTURE DI CONTROLLO .. 23

OPERATORI ARITMETICI .. 25

OPERATORI di CONFRONTO e BOOLEANI ... 25

OPERATORI COMPOSTI ... 26

LE FUNZIONI di INPUT E OUTPUT ... 27

FUNZIONI TEMPORALI .. 29

FUNZIONI MATEMATICHE ... 30

FUNZIONI TRIGONOMETRICHE ... 30

NUMERI CASUALI .. 31

COMUNICAZIONE SERIALE .. 31

⌂ AUTOMAZIONE CON ARDUINO .. 32

CARATTERISTICHE E LIMITI ... 32

LIVELLI LOGICI ... 33

TTL (Transistor-Transistor Logic): .. 33

CMOS: ... 33

diodo LED .. 34

INGRESSO DIGITALE CON PARTITORE DI TENSIONE ... 35

PULSANTE (PUSH BUTTON) ... 36

INTERRUTTORE (SLIDER) ... 37

INTERRUTTORE e PULSANTE in modalita’ PULL-UP (LOGICA INVERSA) .. 38

POTENZIOMETRO .. 39

GESTIONE RELE’ CON ARDUINO .. 40

VALUTAZIONE DEL TEMPO TRASCORSO CON ARDUINO millis() .. 41

LETTURA ANALOGICA MEDIATA ... 42

ESERCIZIO millis() .. 43

Finecorsa meccanico ... 44

IL TRANSISTOR .. 47

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 4

transistor BJT (bipolar junction transistor) .. 48

transistor MOS (MOSFET) ... 48

BJT vs MOS (MOSFET): Caratteristiche Tecniche ... 49

Quando usare i transistor BJT e MOSFET .. 49

IL TRANSISTOR BJT .. 50

ESERCIZIO BJT .. 51

TRANSISTOR PER PILOTARE RELE’ DI POTENZA (TENSIONE>5V) .. 52

ESERCIZIO BJT + RELE’ ... 53

ESERCIZIO BJT + RELE’ ... 54

IL TRANSISTOR DI POTENZA (DARLINGTON) ... 55

TIP120 per attivare ELEMENTO riscaldante resistivo .. 56

IL TRANSISTOR MOSFET .. 57

DIMENSIONAMENTO MOSFET come interruttore .. 58

Controllo motore MOSFET di potenza .. 59

circuito motore CC MOSFET di potenza semplice ... 59

IRF520 MOSFET ... 60

MODULO IRF520 MOSFET ... 61

ESERCIZIO CON NMOS .. 62

CONFRONTO FRA TRANSISTOR BJT E NMOS .. 63

SHIELD MOSFET 4 CANALI ROSSA ... 65

SHIELD MOSFET 4 CANALI BLU .. 66

Relay Shield ArduinO IMPILABILE ... 67

Layout shield ... 68

TEST DEI 4 RELE’ DELLO SHIELD .. 69

Simulazione nastro traspostatore ... 70

ELETTROVALVOLE PNEUMATICHE ... 71

PANNELLO DI ELETTROPNEUMATICA ... 72

Azionamento cilindri pneumatici .. 73

1° ESERCIZIO .. 73

2° ESERCIZIO .. 78

⌂ SENSORI DI PROSSIMITA’ ... 80

Tipi di sensori di prossimità .. 80

1. Sensore di prossimità induttivo .. 80

2. Sensore di prossimità capacitivo ... 81

3. Sensore di prossimità a ultrasuoni .. 82

4. Sensore di prossimità ottico.. 83

5. Sensore di prossimità magnetico .. 83

Configurazioni e applicazioni dei sensori .. 85

ContattO DRY (aSCIUTTO) e WET (bagnato) ... 86

CABLAGGIO SENSORI 2 e 3 fili CON ALIMENTAZIONE... 87

SENSORE A 2 FILI ... 87

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 5

SENSORE A 3 FILI ... 87

Terminali E COLLEGAMENTI .. 88

Lettura SENSORI PROSSIMITA’ a 2 FILI .. 89

COLLEGAMENTO AD ARDUINO IN MODALITA’ PULL-UP CON Vcc<=5V ... 89

Lettura contatto bagnato CON TENSIONE Vcc > 5V con Arduino .. 89

Sensore reed a due fili .. 90

SEQUENZA PNEUMATICA CON GESTIONE FINECORSA REED ATTIVI ... 91

Ciclo While .. 92

Ciclo While CON GESTIONE STOP .. 93

Sensore A INFRAROSSI a TRE fili E18-D80NK (NPN) ... 95

Cablaggio sensore di distanza a infrarossi E18-D80NK (NPN) ... 97

SENSORI PNP e NPN (3 FILI)... 98

Uscite PNP ... 98

Uscite NPN .. 98

SENSORE A ULTRASUONI .. 99

Funzionamento del sensore per Arduino .. 99

Sensore di distanza ad ultrasuoni HC SR04 con Arduino .. 101

Principio di funzionamento: .. 101

Schema – ESP32 con sensore a ultrasuoni HC-SR04 ... 103

ESERCIZIO THINKERCAD MISURA DISTANZA CON SENSORE ULTRASUONI ... 104

⌂ SISTEMI DI MOVIMENTAZIONE ... 105

- NASTRO TRASPORTATORE - GUIDA LINEARE .. 105

IL NASTRO TRASPORTATORE .. 106

Monitorare STATO sensori senza bloccare il codice ... 107

Guida lineare ... 109

CONTROLLO VERSO ROTAZIONE MOTORE ... 110

GESTIONE GUIDA LINEARE .. 111

⌂ SISTEMI DI SUPERVISIONE ... 113

SCADA ... 113

LINGUAGGIO HTML ... 114

ESEMPIO PAGINA HTML .. 114

Marcatori Strutturali Principali ... 115

PRINCIPALI Marcatori di Contenuto e Formattazione .. 115

Marcatori di stile ... 116

WEB SERVER ... 116

ESP32 S3 .. 117

Wi-Fi + Bluetooth 5 (LE) .. 117

Sicurezza ... 117

PINOUT ESP32-S3 DevKitC-1 (Espressif Systems).. 117

D1 R32 ... 118

Controllo motore CC con sensore infrarossi E18-D80NK (NPN) ... 119

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 6

Controllo cilindro pneumatico con sensori reed... 123

Cablaggio eps32 D1 R32 con rele shield: .. 123

WEBSERVER ESP32 per controllo motore CC .. 127

Istruzione = R"rawliteral()rawliteral"; ... 128

Operatore condizionale ternario .. 128

⌂ SENSORI E TRASDUTTORI .. 129

SENSORE DI TEMPERATURA TMP36 ... 131

CURVA CARATTERISTICA DEL SENSORE TMP36 .. 132

ESERCIZIO CON SENSORE TMP36 .. 133

TERMISTORE NTC (Negative Temperature Coefficent) ... 135

MONITORARE TEMPeRATURA TRAMITE TERMISTORE NTC ... 136

MONITORARE TEMPeRATURA con TERMISTORE NTC e LCD 16x2 I2C ... 137

SISTEMA CONTROLLO TEMPERATURA ON-OFF .. 139

TERMORESISTENZE ... 140

Perché utilizzare un sensore al platino ... 140

Differenza tra Pt100 e Pt1000 ... 140

Come scegliere il giusto sensore al platino ... 141

Sostituzione delle termoresistenze: nota sulle norme industriali .. 141

Convertire la resistenza Pt100/Pt1000 in temperatura .. 142

Curva caratteristica delLE termoresistenzE .. 143

TERMORESISTENZA PT100 con partitore di tensione ... 144

TERMORESISTENZA PT1000 CON AMPLIFICATORI DIFFERENZIALE .. 145

Termocoppie ... 147

Digitalizzatore di termocoppia .. 149

Termocoppia Tipo K .. 150

Sonda termocoppia tipo K COMMERCIALE ... 151

Collegamento del modulo MAX6675 a un Arduino .. 152

SENSORE DI UMIDITA’ DHT22 ... 153

DATI TECNICI ... 153

ESTENSIMETRI INDUSTRIALI ... 154

Resistenza degli estensimetri.. 156

Il ponte di Wheatstone ... 156

Collegamento a quarto di ponte ... 156

Legame deformazione elastica E variazione di resistenza elettrica .. 157

Misura della deformazione E DELLA FORZA assiale .. 157

ESERCIZIO .. 158

ESTENSIMETRO CON AMPLIFICATORE DIFFERENZIALE .. 159

FOGLIO DI CALCOLO per valutare deformazioni elastiche .. 160

MISURA DELLA FORZA e della DEFORMAZIONE IN UNA PROVA DI TRAZIONE ... 161

circuito con AMPLIFICATORE DIFFERENZIALE DA STRUMENTAZIONE .. 162

Realizzazioni ... 162

file:///C:/Users/R5800u/Desktop/Scuola%20esercizi/ldb%20itis/Automazione%20Industriale%20III%205AM.docx%23_Toc220994651

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 7

CELLE DI CARICO ... 163

Scheda elettronica per Cella di carico - HX711 ... 164

Schema di collegamento ad Arduino .. 165

SENSORE DI FORZA (FSR Force Sensitive ResistoR)... 166

Esercitazione Arduino ... 167

ESERCIZIO CON seNsore di forza ... 168

INTERRUPT E CONTEGGIO IMPULSI DA UN TRASDUTTORE ... 170

ENCODER .. 172

ENCODER OTTICI ... 173

Encoder incrementale ... 173

Encoder incrementale: risoluzione ... 174

Encoder incrementale: esempio d’uso ... 174

Encoder assoluto ... 174

Encoder assoluto: single-turn o multi-turn ... 175

Misura di velocità dal segnale encoder ... 176

Encoder avanzati ... 176

ESERCIZIO INCREMENTALE ... 177

ENCODER OTTICO AD INFRAROSSI.. 178

SIMULARE L’ENCODER CON UN GENERATORE DI IMPULSI .. 179

⌂ esempi applicazioni sensori .. 181

SISTEMA DI CONTROLLO QUALITA’ SACCHI DI CEMENTO .. 182

SISTEMA DI CONTROLLO QUALITA’ SACCHI DI CEMENTO CON SCARTO .. 186

SISTEMA CONTA PEZZI CON SENSORE ULTRASUONI .. 187

⌂ ATTUATORI .. 189

MOTORE IN CORRENTE CONTINUA (C.C.) ... 190

775 D SHAFT .. 191

PWM (pulse wide modulation): modulazione di larghezza d’impulso.. 192

ESERCIZIO PWM MOTORE CC ... 193

Disturbi elettromagnetici nei motori CC a spazzole .. 194

ESERCIZIO RICAVARE LA CURVA “V- N°” e “V-Pot.” DEL MOTORE C.C. a 12v ASSEGNATO .. 195

ESERCIZIO PWM MOTORE CC + COMANDI SU SERIALE .. 196

REGOLAZIONE VELOCITA’ MOTORE C.C. CON MODULO MOSFET IRF520 ... 198

ENCODER .. 199

INVERSIONE VERSO DI ROTAZIONE MOTORE C.C. CON 2 RELE’ ... 200

ESERCIZIO VERSO ROTAZIONE MOTORE CON RELE’ ... 200

ESERCIZIO VERSO ROTAZIONE MOTORE c.c CON RELE’ + COMANDI SERIALE .. 202

gestione VERSO DI ROTAZIONE MOTORE c.c. CON 4 BJT ... 204

ESERCIZIO VERSO ROTAZIONE MOTORE c.c CON BJT + COMANDI SERIALE ... 205

ESERCIZIO VERSO ROTAZIONE MOTORE CON BJT + COMANDI SERIALE + VELOCITA’ .. 206

DRIVER L298N H-Bridge .. 208

Utilizzo di una curva motore CC .. 210

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 8

Determinazione di quale motore (e riduttore) utilizzare .. 210

Approfondire lo stato di un motore attualmente in funzione in un sistema .. 212

Massa termica ... 212

ESEMPI CURVE DI POTENZA MOTORE 775 A 12- 6- 4 VOLT .. 213

CURVE POTENZA MOTORI DC RS-550 ... 215

SERVOMOTORI .. 217

GESTIONE SERVOMOTORE DIRETTA CON ARDUINO .. 218

ESERCIZIO GESTIONE SERVOMOTORE CON ARDUINO E POTENZIOMETRO ... 219

MOTORE STEPPER (PASSO-PASSO) ... 220

DRIVER A4988 ... 222

Utilizzo del driver passo-passo A4988 .. 223

Utilizzo del driver passo-passo A4988 + potenziometro... 225

Utilizzo del driver passo-passo A4988 con mezzo passo .. 227

GUIDA LINEARE CON MOTORE STEPPER E BARRA FILETTATA t8 passo 2mm .. 229

GUIDA LINEARE CON MOTORE STEPPER E CINGHIA 2GT ... 232

DRIVER DRV8825 contro A4988 .. 233

MOTORI ASINCRONI 230V / 400v ... 234

DATI DI TARGA DI UN MOTORE AC ... 235

SIGNIFICATO DEI dati .. 235

CARATTERISTICHE DEL motore a induzione AC .. 236

Corrente ASSORBITA dAl motore AC... 237

Potenza del motore a induzione AC .. 237

Capacità di carico TERMICO del motore AC .. 238

Statore di un motore asincrono .. 239

collegamentO a stella E A triangolo .. 241

OSSERVAZIONI .. 241

Rotore del motore asincrono .. 242

VELOCITA’ DI ROTAZIONE DEL MOTORE A INDUZIONE AC ... 243

Il campo magnetico rotante .. 245

MOTORE DC O MOTORE AC? .. 247

Vantaggi di un motore AC: .. 247

Vantaggi di un motore DC: .. 247

REGOLAZIONE della VELOCITA’ DEL MOTORE AC  INVERTER .. 248

Circuito inverter basato su Arduino .. 250

Funzionamento del circuito .. 251

AZIONAMENTI AC ... 253

Selezione del motore .. 253

Selezione del convertitore di frequenza ... 253

AZIONAMENTI MECCANICI CON MOTORI ELETTRICI A INDUZIONE ... 254

MOMENTO DI INERZIA DI PEZZI COMPLESSI .. 255

ARGANO PER SOLLEVAMENTO ... 256

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 9

ARGANO PER SOLLEVAMENTO 2 .. 257

AZIONAMENTI MECCANICI: AGITATORE PER LIQUIDI .. 258

NASTRO TRASPORTATORE .. 260

AZIONAMENTO PER NASTRO TRASPORTATORE ... 262

⌂ SISTEMI DI REGOLAZIONE .. 264

SISTEMA DI RISCALDAMENTO resistivo .. 264

REGOLAZIONE DEL NUMERO DI GIRI DI MOTORE C.C. AD ALTA VELOCITA’ ... 266

MODULO IR LM393 .. 267

DISEGNARE IL SUPPORTO PER IL MODULO IR LM393 E IL DISCO FORATO (ENCODER) .. 269

ESERCITAZIONE ... 270

SCHEMA THINKERCAD .. 271

SCHEMA THINKERCAD CON UTILIZZO DEGLI INTERRUPT ... 273

SCHEMA THINKERCAD CON LCD 16x2 E CON UTILIZZO DEGLI INTERRUPT .. 275

⌂ SISTEMI DI CONTROLLO .. 277

SCHEMA A BLOCCHI DI SISTEMA DI CONTROLLO DI TEMPERATURA ... 278

ESEMPIO CONTROLLO PID con transistor ... 279

ESEMPIO CONTROLLO ON-OFF con rele’ .. 280

GENERARE SEGNALI ANALOGICI (DAC) CON ARDUINO .. 281

ESERCIZIO: VARIARE LA LUMINOSITA’ DI UN DIODO LED .. 282

COME VARIARE LA VELOCITA’ DI UN MOTORE C.C. MANTENENDO ALTA LA COPPIA MOTRICE ... 283

sISTEMA DI CONTROLLO TEMPeRATURA E UMIDITA’ .. 284

SISTEMA DI CONTROLLO ON-OFF ... 286

SISTEMA DI CONTROLLO PID (proporzionale – integrale – derivativo) .. 287

IMPLEMENTAZIONE NUMERICA PID ... 288

Integrazione numerica dell’errore .. 289

Derivazione numerica dell’errore ... 289

Regole di Ziegler-Nichols ... 290

CONTROLLO DI TEMPERATURA ON-OFF CON SENSORE TMP36 ... 291

CONTROLLO LIVELLO ON-OFF CON SENSORE ULTRASUONI ... 293

CONTROLLO LIVELLO ON-OFF CON SENSORE ULTRASUONI 2 .. 295

CONTROLLO DI LIVELLO CON SENSORE ANALOGICO .. 296

CONTROLLO LIVELLo con sensore analogicO non lineare ... 298

DIMENSIONAMENTO DEL PARTITORE DI TENSIONE ... 298

CONTROLLO temperatura con sensore analogicO non lineare ... 301

CONTROLLO DI TEMPERATURA CON TERMISTORE NTC E RELE’ .. 302

CONTROLLO DI TEMPERATURA ON-OFF CON termistore NTC E NMOS ... 304

CONTROLLO IN POSIZIONE di una guida lineare con motore c.c. e encoder ottico increm. .. 306

Schema a blocchi ... 306

logica del sistema di controllo .. 307

SIMULAZIONE CON EXCEL DEL SISTEMA DI CONTROLLO PROPORZIONALE ... 308

SIMULAZIONE CON EXCEL DEL SISTEMA DI CONTROLLO PID ... 309

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 10

SCHEMA Sistema di controllo posizione con Arduino e transistor di potenza TIP120 .. 311

SCHEMA Sistema di controllo con transistor di potenza TIP120 e PONTE H L298N ... 312

CONTROLLO IN POSIZIONE E IN VELOCITA’ .. 313

CONTROLLO DI TEMPERATURA “P.I.D.” CON NTC E RF520 .. 314

ESP32 .. 317

La scheda di sviluppo DevKitC ... 318

Come collegare un sensore elettronico ad ESP32 .. 321

I canali di comunicazione disponibili ... 321

Le librerie di comunicazione software per ESP32 ... 321

Esempi di codice C++ per leggere i sensori I2C ... 322

Esempi di codice C++ per leggere i sensori SPI ... 322

⌂ robotica industriale ... 324

Sistemi robotici ... 325

Tipi di giunto ... 325

Tipi di robot ... 325

Robot collaborativi (cobot) ... 326

Le differenze tra robot e cobot: 4 cose da sapere .. 328

Arresto monitorato ... 328

Guida manuale .. 328

Monitoraggio della velocità e della separazione .. 328

Limitazione di potenza e forza .. 328

ROBOT PLANARE ... 329

MECCATRONICA: DIMENSIONAMENTO LINK LASER PLANARE ... 330

dimensionare i link del robot planare assegnato .. 332

SOLLECITAZIONI SUI LINK DEL ROBOT PLANARE nella posizione distesa.. 333

PIANO VERTICALE: TAGLIO + FLESSIONE ... 334

PIANO ORIZZONTALE .. 334

CALCOLO SFORZI E DEFORMAZIONE PETG nella posizione distesa .. 335

CALCOLO SFORZI E DEFORMAZIONE ALLUMINIO 6061 nella posizione distesa ... 336

MIGLIORARE LA RESISTENZA A DEFORMAZIONE ELASTICA TRAMITE NERVATURE LATERALI .. 337

CALCOLO SFORZI E DEFORMAZIONE sul modello effettivo in ABS nella posizione distesa .. 338

SOLLECITAZIONI SUI LINK DEL ROBOT PLANARE nella posizione ad angolo retto .. 339

CINEMATICA DEL ROBOT .. 341

CINEMATICA DIRETTA DEL ROBOT PLANARE A 2 LINK.. 341

FOGLIO DI CALCOLO .. 341

CINEMATICA INVERSA DEL ROBOT DEL ROBOT PLANARE .. 343

FOGLIO DI CALCOLO .. 343

ESERCIZIO CINEMATICA INVERSA DEL ROBOT DEL LASER PLANARE .. 344

ESERCIZIO TAGLIO LASER SCARA 2 ASSI .. 345

ESERCIZIO TAGLIO LASER SCARA 2 ASSI CON EMERGENZA E RESET ... 348

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 11

FOGLIO DI CALCOLO .. 348

ESERCIZIO TAGLIO LASER SCARA 3 ASSI .. 351

ROBOT SCARA ... 354

MOVIMENTI E ANGOLI DEL ROBOT SCARA ... 354

Applicazioni tipiche DEL ROBOT SCARA .. 355

END EFFECTOR .. 355

ESERCIZIO ROBOT SCARA .. 356

ROBOT ANTROPOMORFO ... 360

CINEMATICA DIRETTA ED INVERSA robot a 3 link ... 361

Codice G per la programmazione CNC .. 362

Il codice G in sintesi ... 362

Blocchi di Codice G .. 363

Programmi in codice G ... 364

Modali e codici di indirizzo .. 365

Panoramica dei codici G e dei codici M ... 366

Cicli fissi in codice G .. 369

⌂ ELETTROPNEUMATICA ... 370

ELETTROVALVOLE PNEUMATICHE ... 371

COMANDO ATTUATORI ELETTROPNEUMATICI CON ARDUINO .. 373

SENSORI MAGNETICI (REED SWITCHES) ... 374

ESERCITAZIONE SEQUENZA PNEUMATICA .. 375

FORMULE Elementi circuitali ideali ... 377

Resistore ... 377

Condensatore .. 377

Induttore ... 378

Sorgenti ... 378

Il resistore pull-up NEI MCU .. 379

Come funzionano i resistori pull-up? .. 380

Come trovare l'impedenza di ingresso di un circuito integrato .. 381

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 12

⌂
IL MICROCONTROLLORE

Un microcontrollore (microcontroller o MCU, MicroController Unit) è un single-chip computer, ovvero un microcalcolatore

integrato su un singolo chip. Come suggerisce il nome, il microcontrollore è utilizzato principalmente per realizzare sistemi di

controllo digitale e, in particolare, nei dispositivi cosiddetti embedded. Si tratta di sistemi elettronici di elaborazione a

microprocessore progettati appositamente per una determinata applicazione (special purpose) ovvero non riprogrammabili

dall'utente per altri scopi.

Il microcontrollore si differenzia rispetto al microprocessore in quanto al proprio interno contiene normalmente anche una certa

quantità di memoria RAM e di EPROM e vari dispositivi periferici integrati, come timer, convertitori AD etc. Si tratta dunque di

un vero e proprio computer completo di tutto ciò che occorre per il suo funzionamento.

La figura seguente mostra uno schema della struttura interna di un MCU.

Si noti che generalmente il MCU non viene collegato a chip di memoria esterni (a differenza del microprocessore): l'intero

programma di gestione del MCU e i relativi dati devono dunque risiedere sulla memoria interna integrata on chip.

A differenza del Personal Computer (PC), che è un dispositivo general purpose (cioè di applicazione generale, che può eseguire

un gran numero di programmi diversi), i microcontrollori hanno una potenza piuttosto limitata e sono utilizzati in applicazioni

specifiche, spesso per eseguire sempre lo stesso identico compito.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 13

LA SCHEDA ARDUINO UNO R3

Arduino è una piattaforma hardware composta da una serie di schede elettroniche dotate di un microcontrollore.

È stata ideata e sviluppata nel 2005 da alcuni membri dell'Interaction Design Institute di Ivrea come strumento per

la prototipazione rapida e per scopi hobbistici, didattici e professionali. Il nome della scheda deriva da quello del bar

di Ivrea frequentato dai fondatori del progetto, nome che richiama a sua volta quello di Arduino d'Ivrea, Re d'Italia nel 1002.

Con Arduino si possono realizzare in maniera relativamente rapida e semplice piccoli dispositivi come controllori di luci, di

velocità per motori, sensori di luce, automatismi per il controllo della temperatura e dell'umidità e molti altri progetti che

utilizzano sensori, attuatori e comunicazione con altri dispositivi. La scheda è abbinata a un semplice ambiente di sviluppo

integrato per la programmazione del microcontrollore. Tutto il software a corredo è libero, e gli schemi circuitali sono distribuiti

come hardware libero e per questo motivo è molto utilizzato nella didattica educativa.

1- PORTA USB

E’ la porta con cui si collega la scheda al computer tramite cavo apposito. Il suo ruolo, ovviamente, è anche quello di scambiare i

dati con il computer permettendo l’upload dello sketch.

Una volta che lo sketch è caricato sulla scheda, questa porta può anche essere utilizzato per alimentare la scheda con un

alimentatore esterno da 5 V con uscita USB.

2- ALIMENTAZIONE ETERNA

Questo jack permette l’alimentazione esterna alla scheda.

Si suggerisce di non superare i 12 V onde evitare problemi di stabilità e surriscaldamento della scheda.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 14

3- CONVERTITORE USB-SERIALE

E’ una parte importantissima della scheda che consente la comunicazione bidirezionale tra il computer e la scheda, in

particolare, tra il computer e il microcontrollore, scambiando dati e consentendo l’upload degli sketch.

4- CIRCUITO DI REGOLATORE DI ALIMENTAZIONE

Nel caso siano presenti sia alimentazioni tramite USB che tramite jack, grazie a questo ripartitore, la scheda è in grado di

scegliere dove prendere la tensione necessaria.

È considerata fonte primaria quella proveniente dal jack esterno. In ogni caso, come già detto, la tensione proveniente dal jack

non dovrebbe mai superare i 12V, ma nemmeno essere inferiore ai 7V. In quest’ultimo caso, infatti, è possibile che il sistema

non riesca a fornire alla scheda i 5V nominali di cui ha bisogno per funzionare.

5- PIN DIGITALI

Sono 14 PIN che rispondono ad una logica digitale I/O. Significa che possono essere collegati in lettura a dei sensori o a dei

dispositivi esterni a patto che essi funzionino con logica digitale.

La logica digitale è quella booleana, ovvero che prevede solo due stati, 0 e 1 (acceso/spento, on/off, alto/basso) e che, in termini

elettrici, associa 0V allo 0 e 5 V all’1.

Se colleghiamo a questo PIN una lampadina potremmo accenderla e spegnerla non modulare, almeno in linea teorica, la sua

luminosità.

Una menzione speciale meritano i PIN 3, 5, 6, 9, 10 e 11 che possono essere utilizzati come PIN analogici e impulsi PWM (Pulse

Width Modulation che vedremo negli esempi in seguito) utilissimi per la regolazione di attuatori come motori e servomotori.

6- PIN ANALOGICI

Sono 6 PIN che possono leggere e inviare segnali analogici, con valori cioè compresi tra 0V e 5V.

In particolare il microcontrollore legge la tensione presente sul PIN e restituisce un valore compreso tra 0 e 1023 (un numero a

10 bit).

Alcuni sensori provvedono a mappare il valore risultante nella scala desiderata (ad esempio temperatura o distanza), in altri casi,

la conversione va effettuate nel codice stesso.

7- PIN ALIMENTAZIONE

Sono i PIN dedicati all’alimentazione dei sensori, degli attuatori o dei circuiti creati e collegati alla scheda. Possono fornire una

tensione di 5V e 3,3V con i rispettivi PIN, mentre quelli contrassegnati con GND servono per raccogliere la “massa”, il ritorno

della corrente dal circuito.

Una piccola menzione per i due PIN RESET e Vin. Il primo serve per resettare il microcontrollore con azione identica a quella del

pulsante dedicato installato a bordo macchina.

Il secondo permette di prelevare alimentazione in quantità pari a quella fornita dal jack o di restituire la stessa direttamente al

regolatore di tensione di Arduino (non useremo questi due PIN in questo corso).

8- MICROCONTROLLORE ATMEL ATMEGA328P

È il vero cuore della scheda che consente di agire come microcontrollore, controllando cioè dispositivi esterni, integrando quella

che è la memoria su cui è salvato il programma.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 15

I PIN DI ARDUINO: DIGITALI, PWM ED ANALOGICI

I PIN DI ARDUINO SONO LE PORTE CHE CONSENTONO ALLA SCHEDA DI COMUNICARE E QUINDI RICEVERE ED EMETTERE

INFORMAZIONI VERSO I DISPOSITIVI AD ESSO CONNESSI.

Arduino ha un totale di 19 pin che si dividono in 2 macro categorie: pin analogici (5 pin) e pin digitali (14 pin).I pin digitali sono

utilizzabili sia per ricevere segnali e quindi acquisire informazioni (input) che per emetter segnali ossia spedire informazioni

(output). I pin digitali si dividono a loro volta in base al supporto o meno della funzione PWM.

I pin che non hanno PWM sono: 1,2,4,7,8,12,13,15.

Questi pin sono come detto prima in grado di gestire solo segnali 0 e 1 (low/high) il che significa che possono essere utilizzati in

situazioni come un relè, un pulsante e tutte quelle situazioni in cui vi è sono fondamentalmente 2 stati o possibilità.

Con un pin PWM è possibile generare in uscita un segnale analogico da 0-5V con una risoluzione di 8 bit (5/255 volt =͌0,02V) .

Un segnalel PWM (pulse wide modulation) è in termini molto semplicistici, un onda quadra 0-5V (ad alta frequenza) con delle

durate prestabilite per la parta alta (5V).

Ciò permette di simulare un valore analogico di tensione compreso tra 0-5V con uno digitale con la maggior parte degli attuatori

(transistor, relè, motori CC ...).

I pin analogici invece sono in grado solo di ricevere segnali ed hanno un range che va da 0 a 1023. Questa tipologia di pin è

utilizzata quindi per leggere tutti quei sensori come trimmer, potenziometri, fororesistenze, ultrasuoni, IR.

 5V

 0V

 0,25*5 V

 0,5 V

 0,75*5 V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 16

MICROCONTROLLORE INDUSTRIALE

A differenza di un microcontrollore per uso obbistico o domestico, quello industriale deve essere in grado di funzionare anche in

ambienti critici e di interfacciarsi facilmente con altri dispositivi industriali che tipicamente funzionano a 24-30V o in tensione

alternata.

Un esempio di microcontrollore industriale basato sul chip ESP32 è il seguente.

MODULO RELÈ WIFI ESP32-S3 INDUSTRIALE A 8 CANALI

Basato su ESP32-S3, supporta WiFi / Bluetooth.

Interfacce di ingresso digitale, RS485 e porta Ethernet integrate.

Circuiti di protezione integrati come isolamento di potenza e isolamento optoaccoppiatore, sicuri, stabili e affidabili.

Caratteristiche

 Basato sul microcontrollore ESP32-S3 con processore dual-core Xtensa LX7 a 32 bit, in grado di funzionare a 240 MHz

 Comunicazione wireless dual-mode Wi-Fi a 2,4 GHz e Bluetooth LE integrata, con prestazioni RF superiori

 Relè di alta qualità, portata dei contatti: ≤10A 250V AC / 30V DC

 Supporta ingressi digitali passivi e attivi, con isolamento optoaccoppiatore bidirezionale. Il relè supporta il controllo del

collegamento degli ingressi digitali.

 Interfaccia RS485 isolata integrata, per la connessione a vari moduli o sensori industriali RS485 Modbus

 Connettore pin integrato, che consente l'accesso ad altri dispositivi

 Porta USB Type-C integrata per alimentazione, download del firmware e debug

 Morsetto a vite per alimentazione integrata, supporta un ingresso di tensione ampio 7~36 V, adatto per applicazioni

industriali

 Chip RTC integrato, supporta attività pianificate

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 17

 Chip Ethernet W5500 integrato per estendere la porta di rete 10/100Mbps tramite interfaccia SPI

 Opzionale per la versione con porta di rete PoE, con modulo PoE integrato per funzionalità PoE (conforme allo standard

IEEE 802.3af)

 Isolamento dell'optoaccoppiatore integrato per prevenire interferenze dal circuito ad alta tensione esterno collegato al

relè

 Isolamento digitale integrato per prevenire interferenze da segnali esterni

 Isolamento dell'alimentatore unibody integrato, che fornisce una tensione isolata stabile, senza bisogno di

alimentazione aggiuntiva per il terminale isolato

 Slot per scheda TF integrato per l'archiviazione di immagini e file su scheda TF esterna

 Cicalino integrato, LED RGB, alimentatore e indicatori RS485 TX/RX per il monitoraggio dello stato operativo dei

dispositivi

 Custodia in ABS montata su guida, facile da installare, sicura da usare

Circuiti di protezione di isolamento multipli integrati

Supporta RS485 e controllo remoto Bluetooth / WIFi

Relè a 8 canali integrati e ingressi digitali a 8 canali

Portata dei contatti del relè integrato fino a 10 A 250 V CA / 30 V CC

Controllo diretto di elettrodomestici a 220 V CA o dispositivi inferiori a 30 V CC

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 18

Supporta l'ingresso digitale passivo (contatto asciutto) e attivo (contatto bagnato).

passivo attivo

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 19

Scenari applicativi

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 20

RESISTENZA ESTERNA DI PULL-UP CON MCU

Ingresso dell’MCU impostato ad INPUT. Presenta elevate impedenza in ingress (fino a 100M).

Per un interruttore chiuso, l'impedenza del pin di ingresso è meno importante rispetto a un interruttore aperto.
Ma in entrambi i casi una resistenza pull-up di 10K è una buona scelta.Quindi un resistore di pull-up deve avere una resistenza molto inferiore alla
resistenza/impedenza del circuito a cui funge da ingresso. In questo caso, le equazioni precedenti generano tensioni prossime a Vcc quando
l'interruttore è aperto, e 0 quando l'interruttore è chiuso.

L’ingresso viene sicuramente letto ALTO.

L’ingresso viene sicuramente letto BASSO.

La definizione degli stati LOW e HIGH dipende dalla

famiglia logica: per TTL, HIGH va da 2 V a 5 V, e per

CMOS-5 V, HIGH va da 3,5 V a 5 V.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 21

INGRESSO DELL’MCU IMPOSTATO AD INPUT-PULLUP.

Il circuito seguente mostra un pin GPIO con una resistenza di pull-up interna debole (la maggior parte dei microcontrollori

moderni ha resistenze di pull-up su ciascun pin GPIO, in Arduino 20-50K, negli ESP32 45K) e una resistenza di pull-down esterna

forte.

I resistori pull-up/pull-down rappresentano un ottimo modo per impedire che gli ingressi GPIO del microcontrollore assumano

valori indefiniti nei progetti embedded; tuttavia, devono essere dimensionati correttamente (deboli o forti) in base ai requisiti di

consumo energetico e ai circuiti esistenti (ad esempio i resistori pull-up/pull-down interni) per garantire il corretto

funzionamento del circuito.

Un’altra soluzione che comporta un maggiore assorbimento di corrente è la seguente che non usa la resistenza di pull-down ma

collega a massa l’interruttore. A interruttore aperto il micro legge ALTO (è connesso a Vcc). A interruttore chiuso legge BASSO (è

connesso direttamente a massa e scorre corrente). Abbiamo quindi una logica INVERSA.

Ad interruttore aperto con R2 = 200K e R1=20k

abbiamo 0,45V che vengono sicuramente

interpretati come segnale BASSO.

Quando l'interruttore è chiuso, il segnale è portato

ALTO, non a causa della resistenza di pull-up

interna, ma perché è collegata direttamente a VCC.

NB: questa configurazione con resistenza di pull-

down esterna permette di ridurre al minimo la

corrente assorbita (0 in ingresso al micro).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 22

LINGUAGGIO DI PROGRAMMAZIONE DI ARDUINO

LE VARIABILI

Sono dei contenitori di dati, il loro valore viene modificato durante l'esecuzione del programma.

boolean - E' una variabile booleana, quindi il suo valore è vero o falso.

byte - Contiene un numero tra 0 e 255.

int - Contiene un numero intero compreso tra -32'768 e 32'767 (16 bit, 2 byte). Mettendo davanti ad

int "const" diventa una costante, quindi dopo che è stata dichiarata non può più cambiare. (viene usata

ad esempio per assegnare un nome ad un pin).

short - Come "int" ma anche per "Arduini" con architettura Arm (es. Arduino Due, int in queste schede

è di 4 byte)

unsigned int - Come int ma solo numeri positivi, quindi tra 0 e 65'535.

word - Come "unsigned int" ma anche per "Arduini" con architettura Arm.

long - Contiene un numero tra -2'147'483'648 e 2'147'483'647 (32 bit, 4 byte.

unsigned long - Come long ma solo numeri positivi, quindi da 0 a 4'294'967'295.

float - Può memorizzare numeri con la virgola.

double - Nelle schede con architettura Arm contiene un numero fino a 1'7976931348623157x10^308
(8 byte).

char - Contiene un singolo carattere di testo (il numero corrispondente nella tabella ASCII).

string - Contiene più caratteri di testo. Es: char Str1[] = "esempio";

LE COSTANTI

Le costanti sono le variabili preimpostate nel linguaggio di Arduino

INPUT e OUTPUT - sono usate per definire se uno specifico Pin deve essere di ingresso o di uscita.

HIGH e LOW - sono usati per esempio quando si vuole accendere o spegnere un Pin di Arduino.

true e false - indicano che la condizione può essere vera o falsa.

LE STRUTTURE PRINCIPALI

La struttura base di un programma Arduino si sviluppa in almeno due parti:

void setup ()

{Qui mettiamo la parte dello sketch che deve essere eseguita una sola volta (ad esempio dichiarazioni

di input e output).}

void loop ()

{Qui mettiamo la parte dello sketch che deve essere eseguita ciclicamente fino allo spegnimento di
Arduino. Le istruzioni vengono eseguire in sequenza dalla prima all’ultima.}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 23

STRUTTURE DI CONTROLLO

Le strutture di controllo servono a far eseguire al nostro Arduino delle operazioni di logica

If - è il "se" di Arduino, tramite questa struttura è possibile prendere delle decisioni all’interno del
programma.

Esempio: se a è maggiore di b accendi "led1", altrimenti il "led1" rimarrà spento.

if (a > b)
{
 digitalWrite(led1, HIGH);
}

If...else - come if ma se la condizione messa tra parentesi è falsa verrà eseguito tutto il codice che

segue else.

Esempio: se a è maggiore di b accendi "led1". Altrimenti accendi "led2".

if (a > b)
{
 digitalWrite(led1, HIGH);
}

else
{
 digitalWrite(led2, HIGH);
}

for - Ripete il codice per il numero di volte inserito.

Esempio: scrivi 3 volte “esempio” sul monitor seriale.

for (int i=0;i<3;i++)
{
 Serial.print(“esempio”);
}

switch case - Vengono eseguiti diversi blocchi di programma a seconda del valore della variabile
posta tra parentesi.

Esempio: se il valore di "sensore1" è uguale a 600 accendi "led1", se è uguale a 700 accendi "led2".

Se il valore di "sensore1" è diverso sia da 600 che da 700, spegni "led1" e "led2".

switch (sensore1)
{
 case 600:

 digitalWrite(led1, HIGH);

 break;

 case 700:

 digitalWrite(led2, HIGH);

 break;

 default:

 digitalWrite(led1, LOW);

 digitalWrite(led2, LOW);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 24

while - Esegue un blocco di codice infinite volte fino a quando la condizione posta tra le parentesi

diventa vera. (se lo è già all'inizio non viene eseguito)
Esempio: tieni acceso "led1" finchè "sensore1" diventa più piccolo di 600.

while (sensore1 < 600)
{
 digitalWrite (led1, HIGH);
}

do while - Il ciclo "Do While" funziona nello stesso modo del ciclo While, con l'eccezione che viene

provata la condizione solo al termine del ciclo, in questo modo il ciclo "Do While" verrà eseguito

sempre almeno una volta.
Esempio: attendi finchè il valore di un sensore diventa stabile, aspetta 50 millisecondi infinite volte,

finchè il valore del sensore diventa più basso di 100.

do

{

 delay(50);

 x = readSensors();

}

while (x < 100);

Break - Questa struttura serve a bloccare un ciclo "for", "while" o "do". Viene utilizzato anche per

separare le varie condizioni nella funzione "switch case".

Continue - Questo comando fa saltare il resto del codice all’interno del ciclo, e riavvia il ciclo.

Esempio: Crea un salto tra l'incremento del valore di "x"

for (x = 0; x < 255; x ++)
{
 if ((x > 120) && (x < 180))
 {
 continue;
 }
 analogWrite (PWMpin, x);
 delay (50);
}

Return - Termina una funzione che si sta eseguendo e ne restituisce un risultato.
Esempio: se la lettura è maggiore di 400 restituisci 1, altrimenti 0

int checkSensor ()

{

 if (analogRead(0) > 400)

 {

 return 1;

 }
 else
 {

 return 0;

 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 25

OPERATORI ARITMETICI

Questi operatori vengono utilizzati per cambiare il valore contenuto in una variabile.

= - Assegnazione: assegna ad una variabile un valore.

Esempio: assegna alla variabile "valoresensore" il valore di tensione presente in ingresso al pin

analogico 0

valoresensore = analogRead(0);

+ - Addizione: aggiungi un valore ad una variabile.

Esempio: somma al valore di "Y" il valore 3.

Y = Y + 3;

- - Sottrazione: sottrai un valore ad una variabile.

* - Moltiplicazione: moltiplica una variabile per un valore.

/ - Divisione: dividi una variabile per un valore.

% - Modulo: assegna alla variabile il valore del resto di una divisione.

Esempio: 7 diviso 5 uguale 1 con resto 2. La variabile x ora avrà valore 2.

X = 7 % 5;

OPERATORI DI CONFRONTO E BOOLEANI

Questi operatori vengono usati all'interno degli "if" per testare i valori delle variabili.

== - Uguale a

Esempio: se "variabile1" è uguale a 10, accendi "led1".

if (variabile1 == 10)

{

 digitalWrite (led1, HIGH);

}

!= - Diverso da

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 26

< - Minore di

> - Maggiore di

<= - Minore o uguale a

>= - Maggiore o uguale a

Se si vogliono testare più condizioni nello stesso "if" si devono usare gli operatori booleani:

&& - "and" testa se la condizione 1 e la condizione 2 sono vere

Esempio: se "valoresensore" è compreso tra 100 e 200, esegui il codice successivo.

if (valoresensore >= 100) && (valoresensore <= 200)
{
 \\inserire il codice da eseguire
}

|| - "or" testa se la condizione 1 o la condizione 2 sono vere

Esempio: se "valoresensore1" o "valoresensore2" sono maggiori di "100", esegui il codice successivo.

if (valoresensore1 > 100) || (valoresensore2 > 100)
{
 \\inserire il codice da eseguire
}

! - "not" testa se la condizione è falsa

Esempio: se "x" vale "falso" (quindi zero) esegui il codice successivo.

if (!x)
{
 \\inserire il codice da eseguire
}

OPERATORI COMPOSTI

Servono a eseguire operazioni come incrementare il valore di una variabile.

++ - Incremento.

Esempio: incrementa di uno il valore di "val" (val++ è come scrivere val = val+1)

val++;

-- - Decremento.

+= - Addizione composta.

Esempio: incrementa di "y" il valore "val" (val += y è come scrivere val = val+y)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 27

val += y;

-= - Sottrazione composta.

*= - Moltiplicazione composta.

/= - Divisione composta.

LE FUNZIONI DI INPUT E OUTPUT

Sono le funzioni necessarie all'utilizzo dei pin I/O di Arduino.

pinMode () - Serve a definire se intendiamo utilizzare un pin come ingresso o come uscita.

Esempio: classico esempio di lampeggio di un led, in questo caso definisco il pin "ledPin" come uscita

(OUTPUT) perché devo collegarci un led che è un dispositivo di uscita.

Se collegassi un pulsante avrei dovuto definirlo come ingresso (INPUT)

int ledPin = 13;

void setup()

{

pinMode (ledPin, OUTPUT);

}

void loop()

{

digitalWrite (ledPin, HIGH);

delay (1000);

digitalWrite (ledPin, LOW);

delay (1000);

}

digitalWrite () - Permette di scrivere un valore su un pin digitale. Tipicamente viene usato per

portare un pin di uscita a livello alto (5 Volt su Arduino Uno) o basso (0 Volt).

Può anche essere usato per forzare un pin di ingresso a livello alto o basso, tramite le resistenze di

pull-up interne ad Arduino.

Esempio di utilizzo: accende il led interno collegato al pin 13

digitalWrite (ledPin, HIGH);

digitalRead () - Consente di leggere il valore di un pin, essendo digitale il valore può assumere solo

2 valori: alto (HIGH) o basso (LOW)

Esempio: leggi lo stato di un pulsante, successivamente accendi un led se il pulsante è premuto,

spegnilo se il pulsante è a riposo.

int ledPin = 13;

int pulsantePin = 3;

int val = 0;

void setup()

{

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 28

pinMode (ledPin, OUTPUT);

pinMode (pulsantePin, INPUT);

}

void loop()

{

val = digitalRead (pulsantePin);

digitalWrite (ledPin, val);

}

analogRead () - Legge la tensione applicata su un pin di ingresso analogico.

Il valore di questa tensione può andare da 0 a 5V e viene acquisita da Arduino come un valore su una

scala tra 0 e 1023.

analogWrite () - Manda in uscita una tensione 0 - 5 Volt modulata in PWM. Questa tensione viene

vista da molti utilizzatori (ad esempio un led) come una tensione variabile.

Per ottenere ciò dobbiamo scrivere nel campo del valore un numero tra 0 e 255, dove 0 è il led spento

e 255 è il led accesso alla massima luminosità.

Esempio: leggendo il valore analogico di un potenziometro collegato al pin 3 si otterrà un valore con un

range da 0 a 1023.

Dividiamo questo numero per 4 (quindi circa 255) e portiamolo in uscita ad un led collegato su un pin

pwm (ad esempio il 9).

Otterremo una regolazione della luminosità del led girando il potenziometro.
int ledPin = 9;

int potenziometroPin = 3;

int val = 0;

void setup()

{

 pinMode (ledPin, OUTPUT);

}

void loop()

{

 val = analogRead (potenziometroPin);

 analogWrite (ledPin, val / 4);

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 29

FUNZIONI TEMPORALI

Queste funzioni sono quelle che ci permettono di mettere in pausa il programma o di conoscerne il

tempo trascorso dal suo avvio

millis () - Restituisce il numero in millisecondi trascorsi da quando il programma è partito.

Esempio: stampa sul monitor seriale il tempo trascorso dall'avvio del programma

unsigned long tempo;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("Time: ");

 tempo = millis();

 Serial.println(time); // va a capo

 delay(1000);

}

micros () - Stessa cosa di millis ma in microsecondi.

delay () - Mette in pausa il programma per il valore (in millisecondi) che inseriamo tra parentesi.

Esempio: anche qui metto l'esempio di un lampeggio di un led.

Il led viene acceso, passano 1000 millisecondi (1 secondo) poi si spegne, passano altri 1000

millisecondi e il loop riparte.

int ledPin = 13;

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH);

 delay(1000);

 digitalWrite(ledPin, LOW);

 delay(1000);

}

delayMicroseconds () - Stessa cosa di delay ma in microsecondi.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 30

FUNZIONI MATEMATICHE

min (x, y) - Calcola il valore più piccolo fra x e y.

Esempio: assegna alla variabile "Val" il valore più piccolo tra 3 e 10

Val = min (3, 10);

max (x, y) - Calcola il valore più grande fra x e y.

abs (x) - Calcola il valore assoluto di x.

constrain (x, a, b) - Restituisce il valore "x" solo se è compreso tra i valori "a" e "b".

Se "x" è più piccolo di "a" restituisce "a" se invece è più grande di "b" restituisce "b".

Esempio: limita il valore di un sensore "sensVal" tra 10 e 150, se "sensVal" è compreso tra i due valori
allora lascia "sensVal" invariato.

sensVal = constrain (sensVal, 10, 150);

map (value, fromLow, fromHigh, toLow, toHigh) - Cambia il range di un valore.

Esempio: converti un valore con range 0 - 1000 in un valore con range 0 - 200.

Se "variabile" vale 10, "valore" sarà 2.

valore = map (variabile, 0, 1000, 0, 200);

pow (base, exponent) - Indicando la base e l’esponente, esegue l'elevazione a potenza di un

numero. Funziona anche con una frazione come esponente.

sqrt (x) - Calcola la radice quadrata del numero x.

FUNZIONI TRIGONOMETRICHE

La funzioni trigonometriche di base di Arduino

sin (rad) - Calcola il seno di un angolo (in radianti).

cos (rad) - Calcola il coseno di un angolo (in radianti).

tan (rad) - Calcola il valore della tangente di un angolo (in radianti).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 31

NUMERI CASUALI

Ottenere numeri "random" da Arduino

randomSeed (seed)

La sequenza di numeri casuali di arduino è una catena di numeri, molto lunga ma limitata.
Infatti pur essendo i numeri non collegati tra di loro ha la limitazione che l'ordine di questi numeri

casuali è sempre lo stesso. Il comando randomSeed avvia la sequenza in un punto ben preciso, infatti

al posto di "seed" va inserito un numero.
Se si vuole partire da un punto casuale basta inserire la lettura di un pin analogico non collegato a

nulla, l'instabilità su quel pin genererà ad ogni loop un valore di lettura diverso.

random (min, max) - Questa funzione restituisce un numero intero, di valore compreso fra min e
max-1. Se min non è specificato il valore minimo restituito sarà 0.

Esempio:
stampa su monitor seriale un numero casuale, compreso tra 0 e 299.

long randNumber;

void setup()

{

 Serial.begin (9600);

 randomSeed (analogRead (0));

}

void loop()

{

 randNumber = random (300);

 Serial.println (randNumber);

 delay(50);

}

COMUNICAZIONE SERIALE

Si utilizzano per inviare e ricevere dati tra Arduino e il PC tramite un cavo USB.

Serial.begin (speed) - Serve ad impostare la velocità della comunicazione tra arduino e pc.
Generalmente si usa 9600 bps (bit al secondo) ma si possono impostare anche altre velocità, fino a

115.200 bps.

Esempio: inizializza la porta seriale a 9600 bps
Serial.begin(9600);

Serial.print (val, format) - Invia un valore al pc tramite la comunicazione seriale.

Il formato indica il sistema numerico utilizzato.

Esempio:

Serial.print(32); // stampa sul serial monitor 32.

Serial.Print(32, DEC); // stampa 32 in decimale (32)

Serial.Print(32, HEX); // stampa 32 in esadecimale (20)
Serial.Print(32, OCT); // stampa 32 in ottale (40)
Serial.Print(32, BIN); // stampa 32 in binario (100000)
// stampa il valore associato al numero 32 nella tabella ASCII (carattere spazio)
Serial.Print(32, BYTE);

Serial.println (val, format) - Invia un valore al pc con in coda il carattere “A CAPO”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 32

⌂
AUTOMAZIONE
CON ARDUINO

CARATTERISTICHE E LIMITI

I pin digitali possono leggere e generare tensioni di 5V (0V=LOW, 5V=HIGH).

I pin analogici (A0-A5) possono leggere tensioni variabili fra 0-5V con risoluzione 10 bit (2^10  0-1023).

I pin PWM possono generare finti segnali analogici variabili fra 0-5V con risoluzione 8 bit (0-255).

La corrente erogata dal singolo pin può arrivare a 30-40 mA.

Complessivamente la corrente che si prelevare da una scheda Arduino UNO deve superare I 300-400 mA.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 33

LIVELLI LOGICI

TTL (TRANSISTOR-TRANSISTOR LOGIC):

A TTL input signal is defined as "low" when between 0 V and 0.8 V with respect to the ground terminal.
A TTL input signal is defined as "high" when between 2 V and 5 V.
if a voltage signal ranging between 0.8 V and 2.0 V is sent into the input of a TTL gate, there is no certain response from the gate
and therefore it is considered "uncertain" (precise logic levels vary slightly between sub-types and by temperature).
TTL outputs are typically restricted to narrower limits of between 0.0 V and 0.4 V for a "low".
TTL outputs are typically restricted to narrower limits of between 2.4 V and 5 V for a "high", providing at least 0.4 V of noise
immunity.

CMOS:

For a CMOS gate operating at a power supply voltage of 5 volts,
The acceptable input signal voltages range from 0 volts to 1.5 volts for a “low” logic state and 3.5 volts to 5 volts for a “high”
logic state.
Acceptable output signal voltages range from 0 volts to 0.05 volts for a “low” logic state, and 4.95 volts to 5 volts for a “high”
logic state:

Specifications TTL ECL CMOS

FAN IN 12-14 > 10 > 10

FAN OUT 10 25 50

power dissipation (mW) 10 75 0.001

Noise margin 0.5 0.16(least) 1.5 (highest)

Propagation delay(ns) 10 >3 15

Noise immunity very good good excellent

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 34

DIODO LED

Il Led è un componente elettronico costituiti da una giunzione P-N con arseniuro di gallio o con fosfuro di gallio che emette luce

quando attraversato da una corrente compresa tra 10 e 30mA (dall’anodo al catodo).

La caduta di tensione ai capi del Led è di circa 2V (dipende dal colore del Led).

Il circuito sottostante accende e spegne il Led con una frequenza di 1 sec. .

CODICE

void setup()

{

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

 digitalWrite(LED_BUILTIN, HIGH);

 delay(1000); // Wait for 1000 millisecond(s)

 digitalWrite(LED_BUILTIN, LOW);

 delay(1000); // Wait for 1000 millisecond(s)

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 35

INGRESSO DIGITALE CON PARTITORE DI TENSIONE

Ai pin di Arduino non è possibile applicare tensioni superiori a 5V (si danneggerebbero).
Di conseguenza è necessario ridurre una tensione >5V mendiante un partitore di tensione.

Fissando R1=R2= 10k sulla R2 otteniamo 5V. Però in parallelo alla R2 abbiamo l’impedenza del PIN.

Cosa cambia?

In pratica nulla perché 1M in parallelo a 1k danno una resistenza di ancora 1K e quindi all’ingresso del PIN rileviamo (mediante
altro circuito interno) 5V.

Calcoli:

Req = (1/R1+ 1/impedenza)^-1 = (1/1000+ 1/1000000)^1 = 999 ohm

Vout = Vcc * 999/(1000+999) = 4,997 V

10V

I pin dei MCU presentano impedenze oltre a 1M ohm

R1

R2

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 36

PULSANTE (PUSH BUTTON)

E’ un pulsante che non mantiene lo stato se viene rilasciato.

Lo schema mostra come utilizzare il pulsante in modalità NA (normalmente aperto) per accendere il LED interno di Arduino.

La resistenza serve a proteggere il pin 2 nel caso in cui non fosse impostato come INPUT.

CODICE

int buttonState = 0;

void setup()
{
 pinMode(2, INPUT);
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop()
{
 // read the state of the pushbutton value
 buttonState = digitalRead(2);
 // check if pushbutton is pressed.
 if (buttonState == HIGH) {
 // turn LED on
 digitalWrite(LED_BUILTIN, HIGH);
 } else {
 // turn LED off
 digitalWrite(LED_BUILTIN, LOW);
 }
 delay(10); // Delay a little bit to improve simulation performance
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 37

INTERRUTTORE (SLIDER)

E’ un pulsante che mantiene lo stato se viene rilasciato.

Lo schema mostra come utilizzare il pulsante in modalità NA (normalmente aperto) per accendere il LED interno presente sulle

schede Arduino. La resistenza in serie all’interruttore è fondamentale per limitare la corrente in uscita da Arduino quando

l’interruttore viene chiuso.

CODICE

int buttonState = 0;

void setup()
{
 pinMode(2, INPUT);
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop()
{
 // read the state of the pushbutton value
 buttonState = digitalRead(2);
 // check if pushbutton is pressed.
 if (buttonState == HIGH) {
 // turn LED on
 digitalWrite(LED_BUILTIN, HIGH);
 } else {
 // turn LED off
 digitalWrite(LED_BUILTIN, LOW);
 }
 delay(10); // Delay a little bit to improve simulation performance
}

APERTO
PIN Arduino
legge massa

CHIUSO
PIN Arduino

legge 5V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 38

INTERRUTTORE E PULSANTE IN MODALITA’ PULL-UP (LOGICA INVERSA)

Si evita l’utilizzo di resistenze esterne usando quelle interne di Arduino connesse ai PIN digitali.
Bisogna prestare attenzione a leggere l'ingresso: HIGH quando l'interruttore è aperto e LOW quando è chiuso.

CODICE

void setup() {
 Serial.begin(9600);
 //configure pin 2-3 as an input and enable the internal pull-up resistor
 pinMode(2, INPUT_PULLUP);
 pinMode(3, INPUT_PULLUP);
 pinMode(LED_BUILTIN, OUTPUT); // PIN13

}

void loop() {
 int button1 = digitalRead(2);
 Serial.println(button1);

 int button2 = digitalRead(3);
 Serial.println(button2);

// Con il pullup la logica è invertita, significa il pulsante
//va HIGH quando è aperto e LOW quando viene premuto.
// Attivare il pin 13 quando il pulsante è premuto e spento quando non lo è:

 if (button1 == LOW || button2 == LOW) {
 digitalWrite(LED_BUILTIN, HIGH);
 }
 else {
 digitalWrite(LED_BUILTIN, LOW);
 }

 delay(100);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 39

POTENZIOMETRO

Il potenziometro è un dispositivo elettrico equivalente ad un partitore di tensione resistivo variabile (cioè a due resistori collegati

in serie, aventi la somma dei due valori di resistenza costante, ma di cui può variare il valore relativo).

Può essere usato per generare un segnale di controllo analogico (0-5V) per regolare degli attuatori (es. luminosità di un LED,
velocità di un motore ecc.).

CODICE

int sensorValue = 0;

void setup()
{
 pinMode(A5, INPUT);
 Serial.begin(9600); // ATTIVA LA COMUNICAZIONE SERIALE
}

void loop()
{
 // read the input on analog pin 0:
 sensorValue = analogRead(A5);
 // print out the value you read:
 Serial.print("Valore analogico: ");
 Serial.println(sensorValue); // VA A CAPO
 Serial.print("Volt: ");
 Serial.println(sensorValue * 5.0/1024.0);

 delay(1000); // Delay a little bit to improve simulation performance
}

MONITOR SERIALE

Valore analogico: 1023

Volt: 5.00

Valore analogico: 1023

Volt: 5.00

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 40

GESTIONE RELE’ CON ARDUINO

Attivare un motore CC tramite un relè quando viene premuto un pulsante di START.

CODICE

int pinAvvio = 12;
int pinRele= 4;
int stato_bottone=LOW;

void setup()
{
 pinMode(pinAvvio, INPUT);
 pinMode(pinRele, OUTPUT);
}

void loop()
{
 stato_bottone= digitalRead(pinAvvio);
 if (stato_bottone ==HIGH)
 {
 digitalWrite(pinRele, HIGH);
 }
 else
 {
 digitalWrite(pinRele, LOW);
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 41

VALUTAZIONE DEL TEMPO TRASCORSO CON ARDUINO MILLIS()

Per valutare il tempo trascorso in Arduino si deve impiegare la funzione “millis()” che ritorna il numero di millisecondi trascorsi

dall’accensione di arduino. Questo tempo va salvato in una variabile di tipo long (2
32

  da -2.147.483.648 a 2.147.483.647).

Bisogna prestare attenzione al fatto che “millis()” non torna l’ora attuale ma l’intervallo di tempo trascorso dall’accensione e

quindi va usata per valutare se è trascorso un determinato intervatto di tempo!

CODICE

const int ledPin = 13;
int ledState = 0;
long previousMillis = 0; // ultimo tempo di aggiornamento del LED
long dt = 0;

// const indica che non varia
const long interval = 1000; // intervallo di blink (milliseconds)

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {
 long currentMillis = millis();
 dt= currentMillis – previousMillis;

if (dt >= interval) {
 previousMillis = currentMillis; // save the last time you blinked the LED

 // if the LED is off turn it on and vice-versa:
 if (ledState == LOW) { ledState = HIGH; }
 else { ledState = LOW; }

 // set the LED with the ledState of the variable:
 digitalWrite(ledPin, ledState);
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 42

LETTURA ANALOGICA MEDIATA

In generale quando si deve acquisire un dato analogico da un sensore è preferibile effettuare più letture a breve distanza una
dall’altra (il breve dipende dal tempo di risposta del sensore) in modo da mediare eventuali errori di lettura o variazioni
indesiderate dovute a disturbi esterni. Anche in questo caso è necessario utilizzare la funzione “millis()”.

Nell’esempio sottostante viene
effettuata la lettura del potenziometro
per 5 volte ad intervalli di 1 sec.
Al termine delle 5 lettura (si utilizza
una variabile contatore “n” per tenere
traccia delle lettura effettuate) viene
calcolata la media che viene stampata
a schermo.

Da notare che ad ogni intervallo

(dentro il blocco “if (dt > 1000) , “ va

incrementato il contatore e aggiornato

il tempo della lettura fatta.

Dopo le 5 letture va resettato sia il

contatore che il valore della media!

CODICE

int sensorValue = 0;
int sensorValueM =0;
int n=0;
long t0=0;
long dt=0;

void setup()
{
 pinMode(A0, INPUT);
 Serial.begin(9600);
}

void loop()
{
 dt = millis() - t0;
 // leggo sensore ogni 1 sec
 if (dt > 1000) {
 sensorValue = analogRead(A0);
 sensorValueM = sensorValueM + sensorValue;
 Serial.print("Sensore "); Serial.println(sensorValue);
 n= n+1; // contatore
 t0= millis(); // tempo attuale
 }

 if (n>=5) {
 sensorValueM = sensorValueM / 5;
 Serial.print("Media "); Serial.println(sensorValueM);
 n=0;
 sensorValueM = 0;
 }
 delay(10); // 10ms
}

Un potenziometro che permette di regolare la tensione sul pin A0 da 0-5V è il
componente adatto a simulare un sensore analogico con uscita in tensione.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 43

ESERCIZIO MILLIS()

Attivare un motore DC tramite un relè quando viene premuto per almeno 3 secondi un pulsante di START.

CODICE

int stato_bottone=LOW;
long tempo;
long counter=0;
long delta_t;

void setup()
{
 pinMode(4, OUTPUT); // pin comando relè
 pinMode(12, INPUT); // pin stato bottone
}

void loop()
{
 stato_bottone= digitalRead(12);
 if (stato_bottone ==HIGH){
 counter++;
 if (counter==1) {tempo = millis();}
 delta_t = millis() - tempo;
 if (delta_t>=3000){ digitalWrite(4, HIGH); }
 }
 else
 {
 tempo = millis();
 digitalWrite(4, LOW);
 counter=0;
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 44

FINECORSA MECCANICO

Il finecorsa meccanico ha tre pin:

 Comune – Come suggerisce il nome, è il pin comune tra i pin normalmente aperti (NO) e normalmente chiusi (NC).

 Normalmente aperto : normalmente aperto significa che non c'è contatto tra questo pin e il pin comune finché non

viene premuto/attivato il finecorsa.

 Normalmente chiuso – Normalmente chiuso significa che c'è sempre contatto tra questo pin e il pin comune.

Quando il finecorsa viene premuto/attivato, il contatto viene interrotto.

Il finecorsa è fondamentalmente un interruttore unipolare a due vie (SPDT).

10K

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 45

Schema elettrico dell'interruttore di finecorsa Arduino - Normalmente aperto (è la configurazione più comune).

Codice Arduino per interruttore di finecorsa normalmente aperto

#define LIMIT_SWITCH_PIN 7

void setup() {

 Serial.begin(9600);

 pinMode(LIMIT_SWITCH_PIN, INPUT_PULLUP);

}

void loop() {

 if (digitalRead(LIMIT_SWITCH_PIN) == HIGH)

 {

 Serial.println("Activated!");

 }

 else

 {

 Serial.println("Not activated.");

 }

 delay(100);

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 46

Schema elettrico dell'interruttore di finecorsa Arduino - Normalmente ciuso

Codice Arduino per interruttore di finecorsa normalmente chiuso

#define LIMIT_SWITCH_PIN 7

void setup() {

 Serial.begin(9600);

 pinMode(LIMIT_SWITCH_PIN, INPUT_PULLUP);

}

void loop() {

 if (digitalRead(LIMIT_SWITCH_PIN) == LOW)

 {

 Serial.println("Activated!");

 }

 else

 {

 Serial.println("Not activated.");

 }

 delay(100);

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 47

IL TRANSISTOR

I transistor si possono dividere in due grandi famiglie:

1. la famiglia dei “BJT: bipolar junction transistor”

2. la famiglia dei “MOSFET: metal-oxide-semiconductor-field-effect-transistor“ comunemente detto MOS.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 48

TRANSISTOR BJT (BIPOLAR JUNCTION TRANSISTOR)

La differenza principale tra le due famiglie risiede nella tecnologia con cui vengono realizzati.

Il BJT viene implementato tramite una giunzione bipolare costituita da silicio drogato in maniere differenti in tre zone dette

regione di base, regione di collettore e regione di emettitore.

I terminali delle tre regioni vengono metallizzati per creare i contatti che successivamente usciranno dal package del

componente per poter essere saldati sulla scheda elettronica.

L’applicazione di tensioni adeguate sui terminali di collettore ed emettitore e l’imposizione di un flusso di corrente nella regione

di base fanno funzionare il BJT in una delle sue tre regioni di lavoro: saturazione e interdizione nel caso si voglia farlo lavorare

come interruttore, zona lineare nel caso si voglia realizzare un amplificatore.

TRANSISTOR MOS (MOSFET)

Il MOS (MOSFET) invece è strutturato in maniera differente tramite tre strati: lo strato di metallo, lo strato di ossido e quello

di semiconduttore.

Il principio fisico su cui si basa è diverso rispetto a quello del BJT. I terminali sono sempre tre, cambiano solo i nomi: qui

abbiamo gate, drain e source.

Come dice il nome stesso del transistor il funzionamento si basa sul cosiddetto effetto di campo che crea un canale in cui

possono fluire gli elettroni tra source e drain, quando ai terminali sono applicate le corrette tensioni.

Anche con questo dispositivo le regioni di lavoro sono tre: interdizione e triodo che determinano il funzionamento come

interruttore e la saturazione che determina il funzionamento come amplificatore.

http://systems.closeupengineering.it/wp-content/uploads/2016/09/bjt1.png
http://systems.closeupengineering.it/wp-content/uploads/2016/09/bjt2.jpg
http://systems.closeupengineering.it/wp-content/uploads/2016/09/mos1.jpg
http://systems.closeupengineering.it/wp-content/uploads/2016/09/mos2.jpg

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 49

BJT VS MOS (MOSFET): CARATTERISTICHE TECNICHE

Fatta una sintetica panoramica sulle principali tecnologie costruttive, possiamo addentrarci nelle caratteristiche tecniche delle

due famiglie di transistor per capire quali siano gli aspetti di maggiore rilievo che fanno pendere l’ago della bilancia dalla parte

dei BJT o dalla parte dei MOS.

Nell’ambito digitale, ad esempio dei microprocessori e dei circuiti integrati regna sovrano senza rivali il MOSFET.

La sua caratteristica di essere auto-isolato (auto-isolato: dispositivo che può essere implementato nella stessa regione di silicio

assieme ad altri componenti ad esso uguali, senza interferire con il funzionamento dei dispositivi adiacenti, grazie ad un

isolamento elettrico dato dal processo produttivo) rende molto facile la connessione in serie o in parallelo di questi dispositivi

senza strati di silicio aggiuntivi, operazione che con i BJT non è possibile senza l’aggiunta di strati di silicio tra un transistor e

l’altro. Questo riduce notevolmente i costi e la complessità del progetto rendendo il MOS il dispositivo perfetto.

Quando si comincia a parlare di commutazioni, trasferimento di potenza e quindi, di convertitori switching di potenza è

opportuno riconsiderare il BJT. Infatti per il trasferimento di potenze maggiori di 1 kW e correnti superiori ai 200 A il MOSFET

lascia il posto al BJT (e ad altri componenti …).

Il BJT infatti regge potenze fino a 2 kW e correnti fino a 500 A. Se per le piccole potenze c’è bisogno di frequenze di

commutazione elevate il MOS si rivela un’ottima scelta perché il BJT non sostiene elevate frequenze di commutazione.

Inoltre nei convertitori switching la dimensione dei componenti, come induttori e condensatori, risulta inversamente

proporzionale alla frequenza. Per cui se in fase di progetto si decide di mantenere contenute le dimensioni dei componenti

aumentando la frequenza di commutazione, con il MOS possiamo andare fino a frequenze di qualche MHz contro i 100 kHz

scarsi del BJT.

Altro aspetto in cui il MOSFET vince la battaglia con il BJT è il metodo di controllo.

- nel BJT il circuito di pilotaggio deve essere in grado di dare corrente costante nella base del BJT, operazione non sempre

facile soprattutto in fase di commutazione o quando si pilotano carichi che richiedono grandi quantità di corrente.

- il MOS a sua volta deve essere pilotato con una tensione di gate costante molto più facile da ottenere sia in fase di

commutazione sia in fase di pilotaggio di carichi che richiedono grandi correnti.

QUANDO USARE I TRANSISTOR BJT E MOSFET

Nell’elettronica digitale, nei microprocessori e nei circuiti integrati si utilizza il MOSFET.

La sua principale caratteristica è quella di essere auto-isolato: dispositivo che può essere implementato nella stessa regione di

silicio assieme ad altri componenti ad esso uguali, senza interferire con il funzionamento dei dispositivi adiacenti, grazie ad un

isolamento elettrico dato dal processo produttivo.

Questo facilita la connessione in serie o in parallelo di questi dispositivi senza strati di silicio aggiuntivi, operazione che con i BJT

non è possibile senza l’aggiunta di strati di silicio tra un transistor e l’altro. La cosa riduce notevolmente i costi e la complessità

del progetto rendendo il MOSFET il transistor utilizzato nella realizzazione dei microchip.

Se abbiamo bisogno di commutazioni, trasferimento di potenza e quindi, di convertitori switch di potenza è ben utilizzare il

transistor BJT. Infatti per il trasferimento di potenze maggiori di 1 kW e correnti superiori ai 200 A il transistor BJT è da preferire

al transistor MOSFET. Il BJT riesce a mantenere potenze fino a 2 kW e correnti fino a 500 A. Tuttavia considerando che per le

piccole potenze c’è bisogno di frequenze di commutazione elevate il MOS è di nuovo un’ottima scelta rispetto al transistor BJT.

Inoltre quando spento non permette alla corrente di scorrere, e ciò si traduce nella riduzione della potenza dissipata. Tale

dispositivo fornisce un considerevole risparmio energetico e previene il surriscaldamento del circuito, una delle principali

problematiche dei circuiti integrati.

Riassumendo:

-il MOSFET può gestire i cambi di stato con frequenze nell’ordine dei MHz,

-il BJT riesce a gestire frequenze di commutazione al di sotto dei 100 kHz.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 50

IL TRANSISTOR BJT

Il transistor a giunzione bipolare (abbreviazione comunemente utilizzata BJT, dall'inglese bipolar junction transistor) è una

tipologia di transistor largamente usata nel campo dell'elettronica analogica principalmente come amplificatore di corrente

e interruttore elettronico.

Esso è composto da tre strati di materiale semiconduttore drogato (drogaggio: aggiunta al semiconduttore puro ("intrinseco") di

piccole percentuali di atomi non facenti parte del semiconduttore stesso, es. fosforo e arsenico per giunzione “n” e boro e

alluminio per giunzione “p”, allo scopo di modificare le proprietà elettroniche del materiale) , solitamente silicio, in cui lo strato

centrale ha drogaggio opposto agli altri due, in modo da formare una doppia giunzione p-n.

Ogni strato è un terminale. Quello centrale prende il nome di base, quelli esterni sono detti collettore ed emettitore.

DIMENSIONAMENTO DI MASSIMA DELLA Rb PER ATTIVARE IL TRANSISTOR

Paramento fondamentale di un transistor è il suo hfe , cioè il guadagno di corrente o fattore di amplificazione:

Ic = hFE * Ib

La corrente Ic gestibile con un semplice BJT è dell’ordine delle centinaia di milli-amper.

Nota la Ic necessaria all’utilizzatore (motore, lampada ecc.) si calcola la Ib attraverso l’hFE del transistor scelto (che deve essere

in grado di gestire la Ic richiesta): Ib= Ic/ hFE.

Ipotizzando una caduta di tensione tipica Vbe del transistor di 0.8V (recuperabile dalla scheda tecnica del BJT) si ricava la Rb

necessaria a limitare la corrente di base: Rb = (Vmicro -0.8) / Ib ohm.

Ad esempio per un motore che assorbe 200mA con un BJT che ha hFE=50 la Rb comandata da Arduino vale:

Ib= 0.2/50 Rb= (5-0.8)/ (0.2/50)= 1050 ohm.

Nei dimensionamenti conviene tutelarsi

prendendo il valore minimo.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 51

ESERCIZIO BJT

Avviare una lampada di emergenza e un motore di bassa potenza a 12V tramite un transistor BJT.

 COMPITO

1. Modificare il circuito per avviare un motore di bassa potenza a 5V.

2. Modificare il circuito per avviare un motore di bassa potenza a 24V.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 52

TRANSISTOR PER PILOTARE RELE’ DI POTENZA (TENSIONE>5V)

Nel caso in cui l’utilizzatore da attivare sia collegato alla rete elettrica a 220V si può utilizzare un relè di potenza (generalmente

con una tensione bobina superiore a 5V) attivato da un transistor pilotato dal microcontrollore a 5V (la corrente Ic richiesta dalla

bobina del relè non può essere fornita direttamente dal microcontrollore) .

Il transistor verrà pilotato dal microcontrollore a 5V sulla resistenza di base dove è richiesta una corrente Ib molto inferiore a

quella di collettore necessaria ad attivare il relè (Ib= Ic/hFE).

Del relè deve essere nota la corrente minima necessaria ad attivare la bobina e la tensione minima richiesta ai suoi capi .

La R2 in serie alla bobina del relè serve per limitare correttamente la tensione sulla bobina poiché generalmente l’alimentatore

usato per il relè è a 12 o 24V.

Ad esempio se il relè necessità di 12V e 100mA, utilizzando un alimentatore da 24V, sulla R2 dovremo avere

24-12=12V (trascurando la Vce nel transitor).

Di conseguenza per avere una Ic=50ma servirà una resistenza R2= 12/0.05= 240 ohm.

La potenza che la R2 deve dissipare è pari a Pot. = 0.05 * 12V = 0.6 watt ( scegliere R da 1 watt).

>5v

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 53

ESERCIZIO BJT + RELE’

Si vuole accendere e spegnere una lampada a 220V tramite Arduino.

Il relè impiegato ha una bobina che necessita di una tensione di alimentazione di 5V e una corrente di 40 mA.

La sua resistenza vale quindi (V/I) 125 ohm.

Trascurando la caduta di tensione Vce sul transistor servirà una resistenza R2 in serie al relè che abbia una caduta di tensione

pari a 7V (12-5).

Quindi la R2 varrà 175 ohm (7/0.04) con una potenza da dissipare pari a circa 0.28W (scegliere R da 1 watt!).

La resistenza di base R1 si calcola noto l’ “hfe” del transistor.

CODICE

void setup()
{
 pinMode(2, OUTPUT);
}

void loop()
{
 digitalWrite(2, HIGH);
}

Usare il generatore di funzioni

d’onda per simulare l’alternata

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 54

ESERCIZIO BJT + RELE’

Si vuole avviare il motore CC da 18v per 10 s quando viene premuto il pulsante start.

Il motore viene comandato tramite un relè che assorbe 48mA con una tensione di 6V.

Per alimentare il relè si ha un alimentatore da 12V.

CODICE

int statoStart;
long t0;
bool flagAttivo=false;
int tempoAttivazione=10*1000;

void setup()
{
 Serial.begin(9600);
 pinMode(2, OUTPUT); // pin BJT
 pinMode(3, INPUT); // pin START
}

void loop()
{
 statoStart= digitalRead(3);
 Serial.println(statoStart);

 if (statoStart== HIGH) {
 t0= millis();
 digitalWrite(2, HIGH);
 Serial.println("ON");
 flagAttivo= true;
 }
 else if (flagAttivo && (millis()-t0)>tempoAttivazione) {
 digitalWrite(2, LOW);
 Serial.println("OFF");
 flagAttivo= false;
 }
 delay(100);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 55

IL TRANSISTOR DI POTENZA (DARLINGTON)

Un Darlington utilizza almeno due transistor bipolari in cui i collettori sono legati insieme, l'emettitore del transistor più piccolo

è legato alla base del transistor più grande, mentre le connessioni del circuito sono fatte all'emettitore dal transistor più grande

e la base del transistor più piccolo è l’ingresso.

In questo modo si ottiene un guadagno di potenza maggiore di quello che può fornire un singolo transistor.

Il guadagno di corrente è il prodotto dell'hfe di ogni singolo transistor, mentre la maggior parte della corrente è trasportata dal

transistor più grande.

Un classico transistor di potenza è il TIP 120 di cui si allega un estratto del datasheet.

Collegamento tipico del TIP120 per pilotare un motore CC.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 56

TIP120 PER ATTIVARE ELEMENTO RISCALDANTE RESISTIVO

Una resistenza elettrica percorsa da corrente continua genera un potenza termica pari a quella elettrica assorbita (Joule) :

Pot = V*I [watt] .

Tramite un transistor di potenza TIP120 (Ic max 5A) si vuole generare una potenza termica di circa 115 watt.

Sul simultare Thinkercad si può osservare la corrente prodotta dal generatore di tensione: 5A.

Il prodotto VRxI= 23.1x5=115.5watt fornisce la potenza dissipata dalla resistenza.

NOTA:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 57

IL TRANSISTOR MOSFET

Un MOSFET a canale N è un transistor che funziona utilizzando una tensione di ingresso positiva.

Ha una resistenza di ingresso estremamente elevata (quasi infinita) che consente di utilizzare il MOSFET come interruttore

comandato da un microcontrollore (in grado di produrre una tensione positiva sufficiente a portarlo in saturazione). Come per il

BJT può anche essere usato come amplificatore di corrente.

La nomenclatura dei pin del MOSFET è diversa da quella del BJT:

Applicando un'opportuna tensione di pilotaggio al gate G di un MOSFET, la resistenza del canale drain-source (D-

S), RDS(on) varia da un valore di molte centinaia di kΩ (circuito aperto) ad un valore inferiore a 1Ω (cortocircuito).

Un esempio di utilizzo del MOSFET come interruttore

In questo circuito viene utilizzato un MOSFET a canale N per accendere e spegnere una semplice lampada.

La tensione di ingresso del gate VGS viene portata ad un livello di tensione positivo appropriato (da minimo 2-3V e oltre) per

accendere il dispositivo e a un livello di tensione 0 per spegnerlo .

Se il carico resistivo della lampada dovesse essere sostituito da un carico induttivo come una bobina, un solenoide o un relè,

sarebbe necessario un "diodo di protezione" in parallelo al carico per proteggere il MOSFET da eventuali correnti di ritorno.

La potenza dissipata nel MOSFET (PD) dipende dalla corrente che scorre attraverso il canale ID a saturazione e anche dalla

“resistenza” del canale RDS (on) .

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 58

DIMENSIONAMENTO MOSFET COME INTERRUTTORE

Supponiamo di dover accendere una lampada di potenza a 6 V (24 W).

Il MOSFET standard impiegato ha un valore di resistenza di attivazione del canale RDS(on) di 0,1 ohm.

Calcolare la potenza dissipata nel dispositivo di commutazione MOSFET.

La corrente che scorre attraverso la lampada è calcolata come:

Quindi la potenza dissipata nel MOSFET sarà data come:

Quando si utilizza il MOSFET come interruttore per controllare motori CC o carichi elettrici con correnti di spunto elevate, la

resistenza del canale "ON" (RDS(on)) tra drain D e il source S è molto importante.

Poiché la relazione di potenza di base è: P = I
2
 R , un valore di resistenza del canale RDS(on) elevato comporterebbe

semplicemente la dissipazione e lo spreco di grandi quantità di potenza all'interno del MOSFET stesso con conseguente aumento

eccessivo della temperatura, che se non controllato potrebbe causare il riscaldamento e il danneggiamento del MOSFET a causa

di un sovraccarico termico.

Un valore RDS(on) più basso per la resistenza del canale è anche un parametro desiderabile in quanto aiuta a ridurre la tensione

di saturazione effettiva del canale (VDS(sat) = ID *RDS(on)) attraverso il MOSFET e quindi funzionerà ad una temperatura più

bassa.

I MOSFET di potenza hanno generalmente un valore RDS(on) inferiore a 0,01Ω che consente loro di funzionare a temperature

basse, prolungando la loro durata operativa.

Una delle principali limitazioni quando si utilizza un MOSFET come dispositivo di commutazione è la massima corrente di

drenaggio D che può gestire.

Quindi il parametro RDS(on) è una guida importante per l'efficienza di commutazione del MOSFET ed è semplicemente dato

come rapporto di VDS / ID quando il transistor è attivo.

Quando si utilizza un MOSFET o qualsiasi tipo di transistor ad effetto di campo come dispositivo di commutazione a stato solido,

è sempre consigliabile selezionare quelli che hanno un valore RDS(on) molto basso e dotarli di un dissipatore di calore adatto per

aiutare ridurre qualsiasi fuga termica e danni.

I MOSFET di potenza utilizzati come interruttore generalmente hanno una protezione da sovracorrente integrata nel loro design,

ma per applicazioni ad alta corrente il transistor a giunzione bipolare BJT è una scelta migliore.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 59

CONTROLLO MOTORE MOSFET DI POTENZA

L’elevatissima resistenza di ingresso (o di gate) del MOSFET, la velocità di commutazione molto elevata e la facilità con cui

possono essere pilotati li rendono ideali per interfacciarsi con amplificatori operazionali, porte logiche standard e

microcontrollori.

Tuttavia, è necessario prestare attenzione per garantire che la tensione di ingresso gate-source (G-S) sia scelta correttamente

perché quando si utilizza il MOSFET come interruttore , il dispositivo deve presentare una bassa resistenza del

canale RDS(on), proporzionale alla tensione di gate di ingresso.

I MOSFET di potenza di tipo a soglia bassa potrebbero non commutare su "ON" fino a quando non sono stati applicati almeno 3

V o 4 V alla sua porta e se l'uscita dalla porta logica è solo +5 V logico potrebbe non essere sufficiente per portare

completamente il MOSFET in saturazione.

Per micro controlli tipo Arduino , ESP32 ecc. sono disponibili MOSFET a soglia bassa progettati per l'interfacciamento con soglie

comprese tra 1,5 V e 2,0 V.

I MOSFET di potenza possono essere utilizzati per controllare il movimento di motori CC o motori passo-passo brushless

direttamente dalla logica del computer o utilizzando controller di tipo PWM (pulse-width modulation).

I MOSFET, controllati in PWM, possono essere utilizzati per controllare di velocità di funzionamento dei motori CC in modo

fluido e silenzioso.

CIRCUITO MOTORE CC MOSFET DI POTENZA SEMPLICE

Poiché il carico del motore è induttivo, un semplice diodo di protezione è collegato in parallelo al motore per dissipare

l'eventuale fem generata dal motore quando il MOSFET lo spegne.

È inoltre possibile utilizzare una rete di bloccaggio formata da un diodo zener in serie con il diodo per consentire una

commutazione più rapida e un migliore controllo della tensione inversa di picco e del tempo di caduta.

Per una maggiore sicurezza, è anche possibile posizionare un diodo zener o al silicio D1 aggiuntivo attraverso il canale di un

interruttore MOSFET quando si utilizzano carichi induttivi, come motori, relè, solenoidi, ecc., per sopprimere i transitori di

commutazione di sovratensione e il rumore, fornendo una protezione aggiuntiva al Interruttore MOSFET se necessario.

Il resistore RGS viene utilizzato come resistore di pull-down per aiutare a ridurre la tensione di uscita TTL a 0 V quando il MOSFET

è disattivato. Tipicamente si usa 1K.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 60

IRF520 MOSFET

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 61

MODULO IRF520 MOSFET

IRF520 MOSFET module can control DC load using Arduino without a relay.

This device can work with up to 100V and continuously control a 2A load.

With proper heat sink it can handle up to 9A.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 62

ESERCIZIO CON NMOS

Attivare una lampada a 12V e 250mA tramite un MOSFET.

CODICE

void setup()
{
 pinMode(12, OUTPUT);
}

void loop()
{
 digitalWrite(12, HIGH);
 delay(1000); // Wait for 1000 millisecond(s)
 digitalWrite(12, LOW);
 delay(1000); // Wait for 1000 millisecond(s)
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 63

CONFRONTO FRA TRANSISTOR BJT E NMOS

Il circuito sottostante mostra lo stesso utilizzatore (lampadina) controllato tramite un TIP120 e NMOS.

La differenza sostanziale è che con l’NMOS si ha una caduta di tensione VDS quasi trascurabile rispetto alla caduta di tensione VCE

del BJT.

In questo modo si ha un minore spreco di potenza elettrica (V*I) e quindi meno calore dissipato dal transistor.

CODICE

void setup()
{
 pinMode(12, OUTPUT);
 pinMode(2, OUTPUT);
}

void loop()
{
 digitalWrite(12, HIGH);
 digitalWrite(2, HIGH);
 delay(1000); // Wait for 1000 millisecond(s)
 digitalWrite(12, LOW);
 digitalWrite(2, LOW);
 delay(1000); // Wait for 1000 millisecond(s)
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 64

Il circuito sottostante mostra lo stesso utilizzatore (motoriduttore CC) controllato in PWM tramite un TIP120 e NMOS. La

tensione di alimentazione dei motori viene regolata tramite un potenziometro.

CODICE

int valPot;

void setup()
{
 pinMode(11, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(A0, INPUT);
 Serial.begin(9600);
}

void loop()
{
 valPot= analogRead(A0);
 Serial.println(valPot);
 analogWrite(11, valPot/4);
 analogWrite(3, valPot/4);
 delay(200); // Wait for 1000 millisecond(s)
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 65

SHIELD MOSFET 4 CANALI ROSSA

Questa scheda ospita 4 mosfet di potenza IRF540 (fino a 140W) e permette quindi comandare contemporaneamente fino a 4

carichi con una tensione massima di 100V. Questi mosfet possonio essere utilizzata anche con una tensione di pilotaggio di 3.3V

tipica dei micro ESP32.

Ogni INGRESSO ncessita di tre connessioni: massa, alimentazione e segnale (3.3-5V o PWM per regolazione corrente)

Alimentazione 12V

Motore

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 66

SHIELD MOSFET 4 CANALI BLU

Questa scheda ospita 4 mosfet di potenza IRF540 (fino a 140W) con una tensione massima di 100V.

Necessita di una tensione di comando di almeno 5V e quindi non può essere utilizzata gli EPS32.

Ogni INGRESSO ncessita di 2 connessioni: massa, e segnale (5V o PWM per regolazione corrente)

int pinMotore=8;

void setup()
{
 pinMode(pinMotore,OUTPUT);
}

void loop()
{
 digitalWrite(8,HIGH);
 delay(2000);
 digitalWrite(8,LOW);
 delay(2000);

}

Motore

12V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 67

RELAY SHIELD ARDUINO IMPILABILE

Relay Shield fornisce una soluzione per il controllo di dispositivi ad alta corrente che non possono essere controllati dai pin I/O

digitali di Arduino a causa dei limiti di corrente e tensione.

Relay Shield è dotato di quattro relè di alta qualità e fornisce interfacce NO/NC, quattro indicatori LED dinamici per mostrare lo

stato acceso/spento di ciascun relè e il fattore di forma dello shield standardizzato per garantire una connessione fluida alla

scheda Arduino o ad altre schede compatibili con Arduino.

Articolo Minimo Tipico Massimo Unità

Tensione di alimentazione 4.75 5 5.25 VDC

Corrente di lavoro 8 - 250 mA

Tensione di commutazione - - 30 VDC

Corrente di commutazione - - 8 UN

Frequenza - 1 - Hz

Potenza di commutazione - - 70 O

Vita del relè 100000 - - Ciclo

scarica da contatto ESD - ±4 - KV

scarica dell'aria ESD - ±8 - KV

Dimensione - 68,7X53,5X30,8 - mm

Peso netto - 55±2 - G

Attenzione

 Applicare 2 strati di nastro isolante sulla parte superiore del connettore USB dell'Arduino in modo da impedire allo

shield di entrare in contatto col connettore (cortocircuito …).

 Non utilizzare una tensione superiore a 35 V CC lato relè.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 68

LAYOUT SHIELD

 Digitale 4 – controlla il pin COM4 del RELAY4 (situato in J4)

 Digitale 5 – controlla il pin COM3 del RELAY3 (situato in J3)

 Digitale 6 – controlla il pin COM2 del RELAY2 (situato in J2)

 Digitale 7 – controlla il pin COM1 del RELAY1 (situato in J1)

Descrizione del pin dell'interfaccia/terminale J1:

COM1 (pin comune) : il pin del relè controllato dal pin digitale.

NC1 (normalmente chiuso) : questo terminale sarà collegato a COM1 quando il pin di controllo RELAY1 (pin I/O digitale 7) è

impostato basso e scollegato quando il pin di controllo RELAY1 è impostato alto.

NO1 (normalmente aperto) : questo terminale sarà collegato a COM1 quando il pin di controllo RELAY1 (pin I/O digitale 7) è

impostato su alto e scollegato quando il pin di controllo RELAY1 è impostato su basso.

I terminali J2-4 sono simili a J1, tranne per il fatto che controllano rispettivamente RELAY2-RELAY4.

Nota: per controllare i quattro diversi relè sono necessari solo quattro pin I/O digitali Arduino, dal 4 al 7.

Inoltre, per alimentare il Relay Shield sono necessari anche i pin 5V e due GND Arduino.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 69

TEST DEI 4 RELE’ DELLO SHIELD

Accendere e spegnare in sequenza tutti e quattro i rele’ dello shield.

CODICE

int pinRele1 = 4;

int pinRele2 = 5;

int pinRele3 = 6;

int pinRele4 = 7;

void setup() {

 pinMode(pinRele1, OUTPUT);

 pinMode(pinRele2, OUTPUT);

 pinMode(pinRele3, OUTPUT);

 pinMode(pinRele4, OUTPUT);

}

void loop() {

 digitalWrite(pinRele1,HIGH); delay(200);

 digitalWrite(pinRele2,HIGH); delay(200);

 digitalWrite(pinRele3,HIGH); delay(200);

 digitalWrite(pinRele4,HIGH);

 delay(2000);

 digitalWrite(pinRele1,LOW); delay(200);

 digitalWrite(pinRele2, LOW); delay(200);

 digitalWrite(pinRele3, LOW); delay(200);

 digitalWrite(pinRele4, LOW);

 delay(2000);

}

Led che indicano

l’attivazione dei

relè

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 70

SIMULAZIONE NASTRO TRASPOSTATORE

Finchè il sensore di presenza (connesso in modalità pullup) non segnala la presenza del pezzo il motore resta attivo.

MODIFICHE DA FARE:

1- aggiungiere uno slider (pulsante di attivazione) per avviare il motore solo se slider attivato

2- modificare il programma in modo da non usare il “delay”

CODICE

int pinMotor = 4;
int pinFinecorsa = 12;
int statoFinecorsa=1;

void setup() {
 pinMode(pinMotor, OUTPUT);
 pinMode(pinFinecorsa, INPUT_PULLUP);
}

void loop() {
 statoFinecorsa = digitalRead(pinFinecorsa);
 if (statoFinecorsa == 1) { digitalWrite(pinMotor,HIGH); }
 else { digitalWrite(pinMotor,LOW); }
 delay(20);
}

Sensore presenza pezzo

Motore nastro
traspostatore

5V

GND

COM

NO

GND

12

Mettere 2 strati di nastro isolante per evitare
contatto diretto fra shield e connettore!

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 71

ELETTROVALVOLE PNEUMATICHE

Una elettrovalvola (o valvola a solenoide) è una valvola che utilizza la forza elettromagnetica per funzionare.

Quando una corrente elettrica viene fatta passare attraverso la bobina del solenoide (generalmente alimentata a 24V), viene

generato un campo magnetico che provoca il movimento di un perno metallico che permette il passaggio dell’aria da una via ad

un’altra.

solenoide
a 24V

 valvola
5/2

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 72

PANNELLO DI ELETTROPNEUMATICA

Il pannello per effettuare delle prove utilizza due cilindri connessi a due elettrovalvole 5/2.

L’uscita dei 4 solenoidi delle elettrovalvole sono tutte connesse a massa.

I quattro ingressi invece sono disponibili per il collegamento esterno a 24V.

Per attivare una fase dei cilindri è necessario alimentare il solenoide corrispondente della elettrovalvola connessa tramite la

chiusura del contatto NO dei relè comandati da Arduino in modo da far fluire la corrente dal generatore esterno (24V) al

solenoide la cui uscita è gia a massa (si chiude il circuito di alimentazione).

ESEMPIO

Ad esempio per attivare la fase B+ del cilindo B (a destra) si deve attivare da Arduino il rele R1 in modo che la corrente dal

generatore 24V possa arrivare al solenoide B+

R1

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 73

AZIONAMENTO CILINDRI PNEUMATICI

1° ESERCIZIO

Simulare la sequenza pneumatica manuale A+ A-. Non utilizzare i finecorsa.

Mantentenere lo stato dello stelo per 2 secondi. L’avvio avviene premendo Start.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 74

Codice

long t0=0;

int n=0;

void setup() {

 Serial.begin(9600);

 pinMode(2, INPUT_PULLUP);

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 //disattivo bobine A

 digitalWrite(4, LOW);

 digitalWrite(5, HIGH);

}

void loop() {

 int sensorVal = digitalRead(2);

 // Start

 if (sensorVal == LOW && n<1) {

 n= n+1;

 // A

 Serial.println("A+");

 digitalWrite(4, HIGH);

 digitalWrite(5, LOW);

 delay(1000);

 // A-

 Serial.println("A-");

 digitalWrite(4, LOW);

 digitalWrite(5, HIGH);

 delay(1000);

 }

 if (sensorVal == HIGH) {

 if (millis() - t0 > 1000) {

 Serial.println("riposo");

 digitalWrite(4, LOW);

 digitalWrite(5, HIGH);

 n=0;

 t0= millis();

 }

 }

}

Codice

// Definizione dei pin

const int PIN_INTERR_START = 2; // Pin per l'interruttore START

const int PIN_RELE_APIU = 4; // Pin per il relè A+ (APIU)

const int PIN_RELE_AMENO = 5; // Pin per il relè A- (AMENO)

// Costanti di temporizzazione (in millisecondi)

const long DURATA_RELE = 2000; // 2 secondi

// Variabili di stato

enum StatoSequenza {

 STANDBY,

 ATTIVA_APIU,

 ATTIVA_AMENO,

 INTERRUZIONE

};

StatoSequenza statoCorrente = STANDBY;

// Variabili per la gestione del tempo

unsigned long tempoInizioFase = 0;

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 75

int statoInterruttore = HIGH; // Lo stato dell'interruttore

void setup() {

 pinMode(PIN_INTERR_START, INPUT_PULLUP);

 // Configurazione dei pin dei relè come output

 pinMode(PIN_RELE_APIU, OUTPUT);

 pinMode(PIN_RELE_AMENO, OUTPUT);

 // Assicurati che i relè siano disattivati all'avvio

 digitalWrite(PIN_RELE_APIU, LOW);

 digitalWrite(PIN_RELE_AMENO, LOW);

 Serial.begin(9600); // Avvio della comunicazione seriale per debug

 Serial.println("Sistema avviato. Stato: STANDBY");

}

void loop() {

 // Legge lo stato attuale dell'interruttore

 statoInterruttore = digitalRead(PIN_INTERR_START);

 // *** Logica di Interruzione Prioritaria ***

 if (statoInterruttore == HIGH && (statoCorrente == ATTIVA_APIU || statoCorrente == ATTIVA_AMENO)) {

 statoCorrente = INTERRUZIONE;

 Serial.println("Interruttore rilasciato. Interruzione sequenza.");

 }

 // *** Logica della Macchina a Stati ***

 switch (statoCorrente) {

 case STANDBY:

 // Aspetta che l'interruttore START venga premuto (LOW)

 if (statoInterruttore == LOW) {

 // Avvia la prima fase

 tempoInizioFase = millis(); // Registra il tempo di inizio

 digitalWrite(PIN_RELE_APIU, HIGH); // Attiva il relè A+

 statoCorrente = ATTIVA_APIU;

 Serial.println("START premuto. Stato: ATTIVA_APIU");

 }

 break;

 case ATTIVA_APIU:

 // Verifica se sono trascorsi 2 secondi

 if (millis() - tempoInizioFase >= DURATA_RELE) {

 digitalWrite(PIN_RELE_APIU, LOW); // Disattiva il relè A+

 // Avvia la seconda fase

 tempoInizioFase = millis(); // Aggiorna il tempo di inizio

 digitalWrite(PIN_RELE_AMENO, HIGH); // Attiva il relè A-

 statoCorrente = ATTIVA_AMENO;

 Serial.println("Tempo A+ scaduto. Stato: ATTIVA_AMENO");

 }

 // Se l'interruttore viene rilasciato, si passa a INTERRUZIONE tramite la logica prioritaria.

 break;

 case ATTIVA_AMENO:

 // Verifica se sono trascorsi 2 secondi

 if (millis() - tempoInizioFase >= DURATA_RELE) {

 digitalWrite(PIN_RELE_AMENO, LOW); // Disattiva il relè A-

 statoCorrente = STANDBY;

 Serial.println("Tempo A- scaduto. Sequenza terminata. Stato: STANDBY");

 }

 // Se l'interruttore viene rilasciato, si passa a INTERRUZIONE tramite la logica prioritaria.

 break;

 case INTERRUZIONE:

 // Disattiva entrambi i relè e torna in STANDBY

 digitalWrite(PIN_RELE_APIU, LOW);

 digitalWrite(PIN_RELE_AMENO, LOW);

 // La sequenza è interrotta. Torna in STANDBY per aspettare una nuova pressione.

 statoCorrente = STANDBY;

 Serial.println("Relè disattivati. Stato: STANDBY");

 break;

 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 76

// Definizione dei pin

const int PIN_PULS_START = 2; // Pin per il pulsante START

const int PIN_PULS_STOP = 3; // Pin per il pulsante STOP

const int PIN_RELE_APIU = 4; // Pin per il relè A+ (APIU)

const int PIN_RELE_AMENO = 5; // Pin per il relè A- (AMENO)

// Costanti di temporizzazione (in millisecondi)

const long DURATA_RELE = 2000; // 2 secondi

// Variabili di stato

enum StatoSequenza {

 STANDBY,

 ATTIVA_APIU,

 ATTIVA_AMENO,

 STOP_INTERRUZIONE

};

StatoSequenza statoCorrente = STANDBY;

// Variabili per la gestione del tempo

unsigned long tempoInizioFase = 0;

// Variabili per il debounce dei pulsanti (opzionale ma consigliato)

int statoPulsStart = LOW;

int statoPulsStop = LOW;

void setup() {

 // Configurazione dei pin dei pulsanti come input con pull-up interno

 pinMode(PIN_PULS_START, INPUT_PULLUP);

 pinMode(PIN_PULS_STOP, INPUT_PULLUP);

 // Configurazione dei pin dei relè come output

 pinMode(PIN_RELE_APIU, OUTPUT);

 pinMode(PIN_RELE_AMENO, OUTPUT);

 // Assicurati che i relè siano disattivati all'avvio (HIGH o LOW a seconda del modulo relè, qui assumiamo

LOW = OFF)

 digitalWrite(PIN_RELE_APIU, LOW);

 digitalWrite(PIN_RELE_AMENO, LOW);

 Serial.begin(9600); // Avvio della comunicazione seriale per debug

 Serial.println("Sistema avviato. Stato: STANDBY");

}

void loop() {

 // Lettura e gestione dello stato dei pulsanti (i pulsanti usano pull-up, quindi LOW = premuto)

 statoPulsStart = digitalRead(PIN_PULS_START);

 statoPulsStop = digitalRead(PIN_PULS_STOP);

 // *** Gestione prioritaria del pulsante STOP ***

 // Se STOP è premuto e non siamo già in STOP, interrompi tutto

 if (statoPulsStop == LOW && statoCorrente != STOP_INTERRUZIONE) {

 statoCorrente = STOP_INTERRUZIONE;

 Serial.println("Pulsante STOP premuto. Interruzione immediata.");

 }

 // *** Logica della Macchina a Stati ***

 switch (statoCorrente) {

 case STANDBY:

 // Aspetta che il pulsante START venga premuto

 if (statoPulsStart == LOW) {

 // Avvia la prima fase

 tempoInizioFase = millis(); // Registra il tempo di inizio

 digitalWrite(PIN_RELE_APIU, HIGH); // Attiva il relè A+

 statoCorrente = ATTIVA_APIU;

 Serial.println("START premuto. Stato: ATTIVA_APIU");

 }

 break;

 case ATTIVA_APIU:

 // Verifica se sono trascorsi 2 secondi

 if (millis() - tempoInizioFase >= DURATA_RELE) {

 digitalWrite(PIN_RELE_APIU, LOW); // Disattiva il relè A+

 // Avvia la seconda fase

 tempoInizioFase = millis(); // Aggiorna il tempo di inizio

 digitalWrite(PIN_RELE_AMENO, HIGH); // Attiva il relè A-

 statoCorrente = ATTIVA_AMENO;

 Serial.println("Tempo A+ scaduto. Stato: ATTIVA_AMENO");

 }

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 77

 // NOTA: Se viene premuto STOP, la condizione 'if (statoPulsStop == LOW...)' all'inizio del loop

 // cambia lo stato in STOP_INTERRUZIONE, uscendo da questa fase al prossimo loop().

 break;

 case ATTIVA_AMENO:

 // Verifica se sono trascorsi 2 secondi

 if (millis() - tempoInizioFase >= DURATA_RELE) {

 digitalWrite(PIN_RELE_AMENO, LOW); // Disattiva il relè A-

 statoCorrente = STANDBY;

 Serial.println("Tempo A- scaduto. Sequenza terminata. Stato: STANDBY");

 }

 // NOTA: Se viene premuto STOP, la condizione 'if (statoPulsStop == LOW...)' all'inizio del loop

 // cambia lo stato in STOP_INTERRUZIONE, uscendo da questa fase al prossimo loop().

 break;

 case STOP_INTERRUZIONE:

 // Disattiva entrambi i relè e torna in STANDBY

 digitalWrite(PIN_RELE_APIU, LOW);

 digitalWrite(PIN_RELE_AMENO, LOW);

 // Aspetta che il pulsante STOP venga rilasciato prima di tornare in STANDBY

 if (statoPulsStop == HIGH) {

 statoCorrente = STANDBY;

 Serial.println("Relè disattivati. Stato: STANDBY");

 }

 break;

 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 78

2° ESERCIZIO

Realizzare la sequenza pneumatica manuale A+A-B+B- utilizzando lo shield relè per comandare le elettrovalvole a 24V.

Non utilizzare i finecorsa. Mantentenere lo stato dello stelo per 2 secondi. L’avvio avviene premendo Start.

Simulazione Thinkercad

A B

24V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 79

Codice

long t0=0;
int n=0;

void setup() {
 Serial.begin(9600);
 pinMode(2, INPUT_PULLUP);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);

 //parto con A- attivo --> stelo dentro
 digitalWrite(4, LOW); digitalWrite(5, HIGH);
 //parto con B- attivo --> stelo dentro
 digitalWrite(6, LOW); digitalWrite(7, HIGH);
}

void loop() {
 int sensorVal = digitalRead(2);

 // Start
 if (sensorVal == LOW && n<1) {
 n= n+1;
 // A+
 Serial.println("A+");
 digitalWrite(4, HIGH);
 digitalWrite(5, LOW);
 delay(2000);
 // A-
 Serial.println("A-");
 digitalWrite(4, LOW);
 digitalWrite(5, HIGH);
 delay(2000);
 // B+
 Serial.println("B+");
 digitalWrite(6, HIGH);
 digitalWrite(7, LOW);
 delay(2000);
 // B-
 Serial.println("B-");
 digitalWrite(6, LOW);
 digitalWrite(7, HIGH);
 delay(2000);
 }

 if (sensorVal == HIGH) {
 if (millis() - t0 > 1000) {
 Serial.println("riposo");
 digitalWrite(4, LOW); digitalWrite(5, HIGH);
 digitalWrite(6, LOW); digitalWrite(7, HIGH);
 n=0;
 t0= millis();
 }
 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 80

⌂

SENSORI DI PROSSIMITA’

Il sensore di prossimità si riferisce a un tipo di sensore senza contatto che emette un campo di energia per rilevare la presenza o

l'assenza di un oggetto. Può trattarsi di un sensore di prossimità per dispositivi mobili, un sensore di prossimità per sistemi di

sicurezza o i diversi tipi di sensori di prossimità utilizzati nell'automazione industriale.

A causa della loro natura senza contatto, i sensori di prossimità presentano molti vantaggi rispetto ai sensori di contatto.

Sono affidabili, durevoli e richiedono poca manutenzione. Inoltre non producono alcun movimento fisico o trasferimento di

calore all'oggetto target e possono essere utilizzati in ambienti difficili.

Un sensore di prossimità può utilizzare onde elettromagnetiche, luce o ultrasuoni per rilevare l'oggetto.

Alcuni rilevano solo i metalli, mentre altri possono individuare sia bersagli metallici che non metallici.

TIPI DI SENSORI DI PROSSIMITÀ

Sulla base delle diverse forme di tecnologie di rilevamento, i sensori di prossimità sono classificati in cinque categorie:

 Sensore di prossimità induttivo;

 Sensore di prossimità capacitivo;

 Sensore di prossimità a ultrasuoni;

 Sensore di prossimità magnetico;

 Sensore di prossimità ottico.

1. SENSORE DI PROSSIMITÀ INDUTTIVO

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 81

Il sensore di prossimità induttivo è chiamato così per utilizzare i principi dell'induttanza per rilevare la presenza di un bersaglio

metallico, senza effettuare alcun contatto fisico. Uno dei tipi più comuni di questo sensore è il sensore di prossimità a correnti

parassite.

Questi sensori sono costituiti principalmente da un oscillatore, una bobina attorno a un nucleo di ferrite e un trigger di Schmitt.

Ecco come funziona un sensore di prossimità induttivo:

 Durante il funzionamento, l'oscillatore genera una corrente alternata che produce un campo elettromagnetico

alternato attorno alla bobina.

 Questo campo si irradia dalla bobina per formare la zona di rilevamento.

 Se un oggetto metallico entra in questa zona di rilevamento, il campo magnetico oscillante induce correnti elettriche

nel suo corpo. Queste sono chiamate correnti parassite.

 Le correnti parassite iniziano quindi a produrre un campo magnetico alternato, interferendo con il campo oscillante

originale del sensore e modificandone le proprietà.

 Questa modifica attiva il trigger di Schmitt e il sensore è in grado di rilevare.

Si noti che questi tipi di sensori di prossimità non possono rilevare oggetti non metallici in quanto tali materiali non producono

correnti parassite.

Applicazioni: Uno dei vantaggi dei sensori induttivi è la loro capacità di operare in ambienti contaminati: sono resistenti alla

presenza di olio, sporcizia e persino umidità. I sensori di prossimità induttivi sono quindi ampiamente utilizzati nelle applicazioni

industriali, automobilistiche e di macchine utensili.

2. SENSORE DI PROSSIMITÀ CAPACITIVO

Il sensore di prossimità capacitivo utilizza un campo elettrico per rilevare la presenza di un oggetto target.

Si tratta fondamentalmente di un condensatore aperto la cui altra piastra è sostituita dal bersaglio, mentre l'aria tra la piastra

del sensore e il bersaglio forma il dielettrico.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 82

Ecco come funziona un sensore di prossimità capacitivo:

 Quando il bersaglio entra nel raggio del sensore, forma una capacità con la sua piastra di rilevamento, che aumenta

man mano che l'oggetto si avvicina.

 Questa azione modifica il valore di capacità del circuito, che a sua volta produce un segnale elettrico utilizzato per

rilevare la presenza.

 Il sensore capacitivo può rilevare sia metalli che non metalli. Questi possono essere polveri, granuli e liquidi o anche

oggetti solidi.

 Poiché il principio di funzionamento del sensore di prossimità capacitivo si basa sull'aumento graduale della capacità, la

sua velocità di rilevamento è generalmente inferiore a quella dei sensori induttivi.

Applicazioni: I sensori di prossimità capacitivi sono utilizzati in un'ampia gamma di applicazioni, compresi i processi di

produzione di alimenti e bevande, il rilevamento del livello, la movimentazione dei materiali, i sistemi di controllo

dell'automazione e altri ambienti industriali. Nel mondo dell'elettronica, questo è il tipo di sensore di prossimità per applicazioni

di rilevamento di telefoni cellulari o tablet.

3. SENSORE DI PROSSIMITÀ A ULTRASUONI

Il sensore a ultrasuoni è leggermente diverso dai sensori induttivi e capacitivi. Questi tipi di sensori di prossimità funzionano
emettendo onde ultrasoniche o onde sonore con una frequenza superiore al limite superiore dell'udito umano, che è di circa 20
kHz. Il sensore a ultrasuoni è costituito da queste parti:

 trasmettitore,

 ricevitore,

 processore di segnale,

 amplificatore

 modulo di alimentazione

Il sensore funziona funziona inviando impulsi sonori ad alta frequenza:

 Quando le onde sonore incontrano un ostacolo, rimbalzeranno al ricevitore.

 Il ricevitore utilizza quindi queste informazioni per determinare la presenza e la distanza tra l'oggetto e il sensore.

I sensori di prossimità a ultrasuoni offrono un'elevata velocità di rilevamento, anche per piccoli oggetti, e hanno un ampio raggio
di rilevamento. Possono anche rilevare bersagli solidi e liquidi nella loro zona di rilevamento.

Applicazioni: I sensori di prossimità a ultrasuoni sono utilizzati principalmente nella robotica, nei sistemi di rilevamento ed

evitamento degli ostacoli, nell'automazione industriale, nei sensori di parcheggio, ecc. Inoltre, questi tipi di sensori possono

anche rilevare le vibrazioni, rendendoli adatti per le applicazioni di monitoraggio delle vibrazioni.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 83

4. SENSORE DI PROSSIMITÀ OTTICO

Il sensore ottico di prossimità funziona secondo il principio della riflessione della luce (In genere si utilizza infrarosso).

Il sensore emette luce verso un oggetto target e misura la quantità di luce riflessa su di esso.

Geenralmente i sensori ottici di prossimità vengono utilizzati in combinazione con un LED a infrarossi o un diodo laser.

Ecco come funziona un sensore di prossimità ottico:

 Quando un oggetto target è abbastanza vicino al sensore, riflette parte dell'energia luminosa verso il rilevatore.

 Questo verrà poi amplificato e utilizzato come segnale elettrico per rilevare la presenza dell'oggetto.

I sensori di prossimità ottici di solito non sono influenzati da polvere, sporco o umidità.

Hanno anche un'alta risoluzione e possono rilevare con facilità anche oggetti molto piccoli nel loro raggio di rilevamento.

Applicazioni: I sensori di prossimità ottici sono ampiamente utilizzati per il rilevamento del livello nei liquidi, il rilevamento della

posizione nelle macchine e nei processi di automazione. Sono anche utilizzati come metal detector nei sistemi di sicurezza e nei

dispositivi di controllo degli accessi. Questi tipi di sensori di prossimità hanno trovato applicazione anche nei sistemi di

navigazione per auto o droni.

5. SENSORE DI PROSSIMITÀ MAGNETICO

Il sensore di prossimità magnetico funziona utilizzando l'attrazione tra il magnete e l'oggetto target per rilevare la presenza di un

oggetto. Uno dei vantaggi di questi sensori è che possono rilevare bersagli magnetici attraverso materiali non metallici, come

plastica e legno. Hanno anche un raggio di rilevamento abbastanza ampio.

Questo sensore può essere di diversi tipi e il suo funzionamento dipende dal tipo di tecnologia utilizzata.

I tipi di sensori di prossimità magnetici includono:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 84

 tipo reed,

 switch,

 a riluttanza,

 magnetoresistivo,

 ad effetto Hall

 ad effetto GMR (magnetoresistivo gigante)

Sensore reed switch: il sensore di prossimità reed magnetico è costituito da due contatti ferromagnetici alloggiati in un involucro

di vetro sigillato. Quando un magnete viene avvicinato al sensore, provoca la chiusura delle lamelle e completa un circuito.

Sensore a riluttanza variabile: questo sensore è costituito da un magnete permanente e una bobina captatrice attorno a

un'espansione polare magnetica e funziona misurando le variazioni di riluttanza.

Sensore ad effetto Hall: questo tipo di sensore funziona misurando la resistenza alle variazioni di un materiale ferromagnetico

quando ad esso viene applicato un campo magnetico.

Sensore magnetoresistivo: questi sensori funzionano rilevando le variazioni di resistenza elettrica causate dalla presenza di un

magnete nelle vicinanze.

Sensore GMR (gigante magneto resistivo): questo tipo di sensore è composto principalmente da piastre ferromagnetiche

separate da un distanziatore non magnetico. Quando un magnete viene avvicinato al sensore, provoca una variazione di

resistenza che attiva un circuito.

Applicazione: i sensori di prossimità magnetici sono comunemente utilizzati come dispositivi di rilevamento della posizione in

macchinari industriali, componenti automobilistici come l'albero motore e altri macchinari. Altre applicazioni includono la

robotica e i sistemi di sicurezza. Questi tipi di sensori di prossimità offrono un funzionamento semplice e possono essere

utilizzati in ambienti difficili come situazioni contaminate o con vibrazioni elevate.

Tabella che riassume i vantaggi e gli svantaggi delle diverse tipologie di prossimità sensori:

Digitare vantaggio difetto Applicazioni tipiche

Tipo induttivo Basso costo, velocità di risposta rapida,
forte capacità anti-interferenza

Può rilevare solo oggetti
metallici

Conteggio oggetti, controllo
della posizione, rilevamento
della presenza

Tipo capacitivo Può rilevare oggetti metallici e non
metallici, insensibile ai cambiamenti
ambientali; velocità di risposta media

La distanza di rilevamento è
fortemente influenzata dal
materiale target

Rilevamento del livello del
liquido, rilevamento del
materiale, interruttore di
prossimità

Ultrasonico Può rilevare vari materiali,
indipendentemente dal colore o dalla
trasparenza, distanza misurabile;
velocità di risposta bassa

Velocità di risposta lenta e
suscettibilità al rumore
ambientale

Misurazione della distanza,
evitamento degli ostacoli,
controllo del livello del liquido

Tipo fotoelettrico Lunga distanza di rilevamento, elevata
precisione e velocità di risposta rapida

Vulnerabile alle interferenze
della luce ambientale e
richiede una linea di vista
libera

Conteggio oggetti, rilevamento
della posizione, scansione di
codici a barre

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 85

CONFIGURAZIONI E APPLICAZIONI DEI SENSORI

Sia i sensori induttivi che quelli capacitivi offrono varie configurazioni per adattarsi alle diverse applicazioni industriali.

Questi sensori possono essere schermati o non schermati: quelli schermati consentono il montaggio a filo e quelli non schermati

offrono un'area di rilevamento più ampia.

Sono disponibili in configurazioni normalmente aperte o normalmente chiuse, nonché in tipi di uscita NPN o PNP per la

compatibilità con diversi sistemi di controllo.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 86

CONTATTO DRY (ASCIUTTO) E WET (BAGNATO)

Nel mondo dei sistemi elettrici ed elettronici, i termini "contatto a secco" e "contatto bagnato" sono frequentemente usati.

Il contatto asciutto, noto anche come "contatto senza tensione", è un tipo di contatto di relè o interruttore che non trasporta

alcuna tensione o corrente dalla sua fonte di controllo. Richiede una fonte di alimentazione esterna per operare.

Essenzialmente, funziona come un semplice interruttore on/off, controllando il flusso di elettricità senza essere direttamente

collegato alla fonte di alimentazione stessa. I contatti asciutti sono tipicamente utilizzati in applicazioni in cui un dispositivo o

sistema deve essere controllato senza trasferire energia elettrica attraverso il componente di controllo.

Ad esempio, possono segnalare a un altro circuito di attivarsi o disattivarsi senza influenzarne le caratteristiche di tensione o

corrente.

Il contatto bagnato invece trasporta la tensione internamente (ha una sua alimentazione dedicata) e può quindi a sua volta

alimentare il dispositivo o il circuito collegato (es. una luce o un cicalino).

Esempio di contatto asciutto e bagnato.

NOTA: per applicazioni in ambienti industriali e/o rumorosi è consigliabile l’uso di sensori a 3 fili dove oltre ai due fili di

alimentazione (Vcc e massa) è presente un terzo filo che trasporta il segnale che risulterà quindi meno disturbabile.

marrone

blu

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 87

CABLAGGIO SENSORI 2 E 3 FILI CON ALIMENTAZIONE

SENSORE A 2 FILI

SENSORE A 3 FILI

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 88

TERMINALI E COLLEGAMENTI

Il sensore di prossimità a tre fili ha tre terminali:

 ingresso di tensione (colore marrone)

 uscita di tensione (colore nero)

 massa comune (colore blu).

Il sensore di prossimità è un sensore attivo che richiede un'alimentazione esterna per funzionare. Pertanto, dobbiamo fornire
una tensione al suo terminale di ingresso.
La differenza principale tra i sensori di prossimità di tipo PNP e NPN è che il sensore di prossimità PNP fornisce un'uscita di
tensione positiva (+), mentre il sensore di prossimità di tipo NPN fornisce un'uscita negativa (-).

Il sensore di prossimità a due fili ha due terminali e deve essere collegato in serie al carico e all'alimentatore.
Tuttavia, è necessario che vi sia un flusso di corrente minimo che mantenga attivo il sensore.
Per il sensore di prossimità a due fili CA, la polarità non è importante, ma nel caso del sensore a due fili CC, è necessario prestare
attenzione alla polarità durante il collegamento.

Procedura di connessione: tipo PNP a tre (3) fili

 Collegare il terminale positivo dell'alimentatore al terminale marrone del sensore.

 Collegare il terminale negativo dell'alimentatore al terminale blu del sensore.

 Collegare il terminale positivo del carico al terminale nero del sensore.

 Collegare il terminale negativo del carico al terminale blu del sensore.

Procedura di connessione: tipo NPN a tre (3) fili

 Collegare il terminale positivo dell'alimentatore al terminale marrone del sensore.

 Collegare il terminale negativo dell'alimentatore al terminale blu del sensore.

 Collegare il terminale positivo del carico al terminale marrone del sensore.

 Collegare il terminale negativo del carico al terminale nero del sensore.

Procedura di collegamento: tipo a due fili CC

 Collegare il terminale positivo dell'alimentatore al terminale marrone del sensore.

 Collegare il terminale negativo dell'alimentatore al terminale negativo del carico.

 Collegare il terminale positivo del carico al terminale blu del sensore.

Procedura di collegamento: tipo a due fili CA

 Collegare il terminale di fase dell'alimentatore al terminale marrone o rosso del sensore.

 Collegare il terminale neutro dell'alimentatore al terminale neutro del carico.

 Collegare il terminale di fase del carico al terminale blu del sensore.

 Sensore a 4 fili (NO + NC)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 89

LETTURA SENSORI PROSSIMITA’ A 2 FILI

COLLEGAMENTO AD ARDUINO IN MODALITA’ PULL-UP CON VCC<=5V

E’ posibile attivare sul pin in ingresso una resistenza di pullup (pari a 30K). Nota: rispetto alle resitenze di pullup reali quelle

software hanno il limite di avere un valore fisso che in certi casi potrebbe non essere adeguato.

LETTURA CONTATTO BAGNATO CON TENSIONE VCC > 5V CON ARDUINO

L’esempio mostra il collegamento di un sensore di prossimità induttivo a due fili ad Arduino che ha una caduta di tensione di 3V.

Si deve utilizzare un partitore di tensione come mostrato di seguito.

Poiché il carico del sensore è attivato da 12-3 = 9 V, l'uscita del partitore sarà di circa 4,5 V quando attivato e di circa 0,4 V

quando non attivato.

Non si deve dimenticare di collegare la massa del sensore (terminale negativo della batteria da 12 V) alla massa dell'Arduino.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 90

SENSORE REED A DUE FILI

In generale, essendo per il sensore indicata una polarità (+-), il collegamento ad Arduino è quello classico in pullup con

resistenza esterna. Quando non c’è il pezzo il pin digitale legge 0 (è a massa tramite la resistenza). Quando c’è il pezzo i 5V di

Arduino alimentano il circuito e viene letta la caduta di tensione sulla resistenza di circa 5V.

Il sensore reed a due fili puo essere connesso in modalità pullup interna con Arduino.

Questo in genere vale per sensori che possono essere alimentati anche in tensione alternata come quello in figura.

Quando non è presente il pezzo viene letto 1 mentre quando è presente viene letto 0. In questa modalità non è possibile

attivare il diodo led interno del sensore.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 91

SEQUENZA PNEUMATICA CON GESTIONE FINECORSA REED ATTIVI

Simulare la sequenza pneumatica manuale A+ A-. Utilizzare i finecorsa reed a due file per gestire le fasi.

Mantentenere lo stato dello stelo per 2 secondi. L’avvio avviene premendo Start.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 92

CICLO WHILE

L'istruzione while esegue un blocco di codice ripetutamente finchè una specifica condizione (indicata tra parentesi) rimarrà vera.
La sintassi è molto simile a quella dell'if:

while (condizione) {
 codice;
}

Se la condizione non è verificata, il codice non sarà eseguito e l'esecuzione passerà alle istruzioni successive.

CODICE ARDUINO

int pinStart= 2;

int pin_a0=8;

int pin_a1=9;

long t0=0;

int n=0;

void setup() {

 Serial.begin(9600);

 pinMode(pinStart, INPUT_PULLUP); // START

 pinMode(pin_a0, INPUT_PULLUP); // a0

 pinMode(pin_a1, INPUT_PULLUP); // a1

 // relè

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 //disattivo bobine A

 digitalWrite(4, LOW);

 digitalWrite(5, LOW);

}

void loop() {

 int sensorVal = digitalRead(2);

 int a0 = digitalRead(8);

 int a1 = digitalRead(9);

 // Start

 if (sensorVal == LOW && n<1) {

 n= n+1;

 // A

 Serial.println("A+");

 digitalWrite(4, HIGH);

 digitalWrite(5, LOW);

 // finecorsa a1

 while(digitalRead(pin_a1)==HIGH) {

 delay(10);

 }

 //delay(2000);

 // A-

 Serial.println("A-");

 digitalWrite(4, LOW);

 digitalWrite(5, HIGH);

 //delay(2000);

 // finecorsa a0

 while(digitalRead(pin_a0)==HIGH) {

 delay(10);

 }

 digitalWrite(5, LOW);

 }

 if (sensorVal == HIGH) {

 if (millis() - t0 > 1000) {

 Serial.println("riposo");

 digitalWrite(4, LOW);

 digitalWrite(5, LOW);

 n=0;

 t0= millis();

 }

 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 93

CICLO WHILE CON GESTIONE STOP

Sfruttiamo il ciclo “while” per controllare lo stato del pulsatnte di STOP e usiamo l’istruzione “break” per uscire subito dal ciclp

se il pulsante è premuto:

 // finecorsa a1

 while(digitalRead(pin_a1)==HIGH) {

 int statoStop = digitalRead(3);

 if (statoStop == LOW) break; // esco dal ciclo

 delay(10);

 }

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 94

CODICE

int pinStart= 2;

int pinStop= 3;

int pin_a0=8;

int pin_a1=9;

long t0=0;

int n=0;

void setup() {

 Serial.begin(9600);

 pinMode(pinStart, INPUT_PULLUP); // START

 pinMode(pinStop, INPUT_PULLUP); // STOP

 pinMode(pin_a0, INPUT_PULLUP); // a0

 pinMode(pin_a1, INPUT_PULLUP); // a1

 // relè

 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);

 //disattivo bobine A

 digitalWrite(4, LOW);

 digitalWrite(5, LOW);

}

void loop() {

 int statoStart = digitalRead(2);

 int a0 = digitalRead(8);

 int a1 = digitalRead(9);

 // Start

 if (statoStart == LOW && n<1) {

 n= n+1;

 // A

 Serial.println("A+");

 digitalWrite(4, HIGH);

 digitalWrite(5, LOW);

 // finecorsa a1

 while(digitalRead(pin_a1)==HIGH) {

 int statoStop = digitalRead(3);

 if (statoStop == LOW) break;

 delay(10);

 }

 // A-

 Serial.println("A-");

 digitalWrite(4, LOW);

 digitalWrite(5, HIGH);

 // finecorsa a0

 while(digitalRead(pin_a0)==HIGH) {

 int statoStop = digitalRead(3);

 if (statoStop == LOW) break;

 delay(10);

 }

 digitalWrite(5, LOW);

 }

 if (statoStart == HIGH) {

 if (millis() - t0 > 1000) {

 Serial.println("riposo");

 digitalWrite(4, LOW);

 digitalWrite(5, LOW);

 n=0;

 t0= millis();

 }

 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 95

SENSORE A INFRAROSSI A TRE FILI E18-D80NK (NPN)

Si tratta di un fotoriflettore ad alta sensibilità per rilevare la distanza, da 3 cm a 80 cm. Quando l'infrarosso emesso

dall'emettitore viene riflesso su una superficie bloccata, il fototransistor capta il segnale per il calcolo della distanza.

Questo dispositivo è dotato di un potenziometro integrato per regolare la portata, rendendolo semplice e intuitivo da usare.

L'utilizzo ideale di questo dispositivo è in ambito robotico, media interattivi, industriale e automobilistico, ecc.

Il sensore generalmente presentra tre fili di colore marrone (Vcc), blu (massa) e nero (segnale).

In alcuni casi si trova la combinazione di colore rosso (Vcc), verde (massa) e giallo (segnale).

Il sensore a infrarossi viene alimentato direttamente da Arduino (filo rosso).

Il cavo verde va a massa e il caso giallo del segnale viene connesso al 10 di arduino (modalità INPUT).

Quando non è presente il pezzo viene letto 1 (5V) mentre quando è presente viene letto 0 (led posteriore acceso).

Il sensore di prossimità a infrarossi E18D80NK permette di rilevare degli ostacoli con una portata regolabile da 3 cm a 80

centimetri. Include un trasmettitore e un ricevitore a infrarossi, tutto in un'unica unità.

Il trasmettitore a infrarossi emette un segnale a infrarossi modulato che viene riflesso dagli oggetti lungo il percorso di

riflessione e quindi interpretato dal ricevitore. Il sensore è meno influenzato dalla luce solare grazie alla sua luce a infrarossi.

Il sensore IR E18-D80 è ampiamente utilizzato nei robot per evitare ostacoli e nelle linee di assemblaggio industriali, nel

parcheggio in retromarcia e in numerose altre applicazioni che richiedono automazione. Il raggio di rilevamento può essere

modificato a seconda dello scopo di utilizzo tramite la vite multigiro situata sul retro del dispositivo.

L'uscita del segnale di commutazione cambia a seconda del rilevamento di un ostacolo.

Rimane alta quando non vengono rilevati ostacoli e diminuisce in caso di ostacoli.

La sonda ha una luce rossa posizionata dietro la sonda stessa che si accende quando rileva un ostacolo.

Il sensore E18 funziona a 5 V e può consumare da 5 mA a 30 mA di corrente, senza carico.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 96

Specifiche e caratteristiche

 Tensione di ingresso: 5 V CC

 Consumo di corrente: >25mA (min) > 100mA (max)

 Dimensioni: 1,7 cm (diametro) x 4,5 cm (lunghezza)

 Lunghezza del cavo: 45 cm

 Rilevamento di oggetti: trasparenti o opachi

 Tipo riflettente diffuso

 Campo di rilevamento: 3 cm-80 cm

 Uscita NPN (normalmente alta)

 Temperatura ambiente: -25 °C ~ 55 °C

La tabella seguente mostra la configurazione dei pin del sensore di prossimità IR. Ha 3 fili di uscita, generalmente codificati a

colori: rosso per VCC, verde per la massa e giallo per l'uscita digitale.

Pin Type/Wire color Pin Description

VCC (Marrone o Rosso) Voltage input(+5V)

GND (Blu o Verde) Ground terminal

Digital pin (Nero o giallo) Digital signal output

Cablaggio sensore di tipo NPN

Mettendo una resisitenza da 300 ohm in serie ad

un led come carico si noterà l’accensione del led

esterno quando il pezzo e presente

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 97

CABLAGGIO SENSORE DI DISTANZA A INFRAROSSI E18-D80NK (NPN)

Il sensore fornisce una uscita ALTA (5V) quando non c’è il pezzo e BASSA (massa) quando viene rilevato.

Essendo il sensore a 5V può essere connesso direttamente ad Arduino tramite i pin 5V e GND.

Il cavo nero (segnale) può essere collegato ad un pin digitale (INPUT) dove potrà essere rilevata la tensione di 5V o 0V.

Per sicurezza sarebbe meglio collegare una resistenza di 10K per limitare la corrente in ingresso al pin in ogni situazione.

CODICE Arduino

void setup() {

 Serial.begin(9600); //Start serial communication boud rate at 9600

 pinMode(2,INPUT); //Pin 2 as signal input

}

void loop() {

 while(1) {

 delay(500);

 if(digitalRead(5)==LOW) {

 // If no signal print collision detected

 Serial.println("Collision Detected.");

 }

 else {

 // If signal detected print collision detected

 Serial.println("No Collision Detected.");

 }

 }

}

Se si utilizza un ESP32 (logica a 3.3V) è obbligatoria una alimentazione esterna di 5V (cavi giallo-nero dalla batteria).

L’uscita del sensore a 5V (cavo nero) non sarebbe adatta agli ingressi GPIO del micro (max 3.3) e sarebbe meglio ridurla a 3.3V

(ad es. con un partitore di tensione). Comunque mettendo una resistenza di 10K in ingresso al pin digitale in modo da limitare la

corrente non dovrebbero esserci particolari problemi per un uso sporadico e di prototipazione (i pin di un ESP32 sono

maggiormente protetti rispetto a quelli Arduino).

NB: collegare la massa del micro a quella della batteria

5V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 98

SENSORI PNP E NPN (3 FILI)

Sebbene sia comune riferirsi ai sensori come PNP o NPN, le abbreviazioni si riferiscono in realtà al tipo di transistor utilizzato nel

dispositivo. La differenza tra PNP e NPN consiste nella costruzione del materiale semiconduttore presente all'interno del

transistor.

In un transistor PNP, il materiale semiconduttore è costituito da tre strati: uno strato negativo (N) tra due strati positivi (P):

Positivo-Negativo-Positivo, o PNP.

Allo stesso modo, un transistor NPN ha uno strato positivo racchiuso tra due strati negativi: Negativo-Positivo-Negativo, o NPN.

Nonostante la diversa costruzione, entrambe le forme hanno cavi di alimentazione positivi e negativi e sono collegate a un

dispositivo chiamato carico (led, PLC, MCU).

USCITE PNP

Chiamata anche sourcing uscita, un'uscita PNP fornisce la corrente al carico collegato. Il carico elettrico è collegato tra l'uscita

del sensore e il lato negativo (comune) dell'alimentazione. La tensione di uscita è uguale alla tensione di alimentazione.

USCITE NPN

Poiché forniscono la massa al circuito, le uscite NPN sono note anche come uscite sinking. In questo caso, il carico elettrico è

collegato tra l'uscita del sensore e il lato positivo dell'alimentazione. La tensione di uscita è un segnale di terra. Nelle uscite NPN,

la corrente scorre in modo opposto a quella delle uscite PNP.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 99

SENSORE A ULTRASUONI

Gli ultrasuoni sono onde sonore con frequenze superiori a quelle udibili dall’orecchio umano: stiamo quindi parlando

di frequenze che superano i 20 kHz e che trovano impiego per lo più in campo medico ed industriale.

 utilizzare un sensore ad ultrasuoni come misuratore di distanze, in attività didattiche dove non sia richiesta un’elevata “qualità

della misura”.

Lasciamo quindi a successivi sviluppi la ricerca di misure precise ed accurate, per le quali dovremmo considerare la velocità

istantanea del suono che è influenzata, principalmente, dalla temperatura e dall’umidità relativa del mezzo.

Per quanto premesso possiamo assumere come costante il valore della velocità del suono in un determinato mezzo, in

particolare l’aria, dove le onde sonore viaggiano a 343,8 m/s a 20°C.

Anche gli ultrasuoni, come tutte le onde, sono soggetti a fenomeni di riflessione. Questa caratteristica ci permette di utilizzare il

sensore per rilevare misure di distanza tra la sorgente emettitrice del segnale sonoro e l’oggetto colpito.

FUNZIONAMENTO DEL SENSORE PER ARDUINO

Un impulso di tensione (3.3 o 5V) di almeno 10 μS (microsecondi) di durata viene applicato al pin Trigger. Si genera così un treno

di 8 impulsi ultrasonici a 40 KHz che si allontanano dal sensore viaggiando nell’aria circostante.

Si ottengono misure più accurate se l’ostacolo si trova di fronte al sensore o in un ipotetico settore circolare di 30° d’ampiezza

(15° da ambo i lati rispetto alla direzione frontale).

Il segnale sull’Echo intanto diventa alto ed inizia la registrazione del tempo di ritorno in attesa dell’onda riflessa.

Se l’impulso non viene riflesso il segnale su Echo torna basso dopo 38 ms (millisecondi) e va interpretato come assenza di

ostacolo. Ricordiamo l’HC-SR04 è in grado di misurare distanze comprese tra i 2 e i 400 cm corrispondenti, per il limite massimo,

a circa 23 ms di durata del segnale su Echo.

Se invece il treno di onde ultrasoniche viene riflesso all'indietro da un oggetto, il segnale sul pin Echo diventa basso e

contestualmente termina il rilievo della sua durata.

https://www.weturtle.org/uploadedimages/projects/R4Immagine.png

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 100

Il tempo ottenuto servirà per calcolare la distanza dell’oggetto: bisogna però tenere presente che l’onda ha percorso per due

volte quella distanza, quando emessa verso l’oggetto e dopo la riflessione verso il sensore. Bisognerà quindi dividere per due la

distanza calcolata con questo tempo.

La velocità del suono nell’aria è di circa 343 m/s.

La funzione pulseIn() introdotta nello sketch ci permette di ottenere la durata dell’impulso ALTO sul pin Echo in microsecondi.

https://www.weturtle.org/uploadedimages/projects/R113.png

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 101

SENSORE DI DISTANZA AD ULTRASUONI HC SR04 CON ARDUINO

Le principali caratteristiche sono:

 Tensione di lavoro: 3 – 5.5 Vdc.

 Corrente assorbita: 3 mA circa.

 Frequenza di lavoro: 40 Khz.

 Distanza min: 2 cm.

 Distanza max: 450 cm.

 Risoluzione: 3 mm.

 Angolo di misura: 15 – 20°.

 Ingresso: Trigger 10us Impulso TTL.

 Uscita: Echo segnale PWM TTL

Ha 4 pin:

 Vcc – viene collegato alla tensione di alimentazione da 3 a 5.5V.

 Trig – è il pin “Trigger” che deve essere portato alto per inviare il segnale ad ultrasuoni.

 Echo – è il pin che produce un impulso che si interrompe quando viene ricevuto il segnale riflesso dall’ostacolo.

 GND – viene collegato GND.

PRINCIPIO DI FUNZIONAMENTO:

Il sensore HC-SR04 emette un treno di impulsi ad ultrasuoni (ne vengomo emessi 8 quando verrà portato per 10 microsecondi a

stato alto il suo pin Trigger). Gli impulsi si propagano nell’ambiente circostante e, se incontrano uno ostacolo, tornano indietro

verso il sensore che li ha emessi. Quando il sensore “rileva” il ritorno dell’impulso sonoro porterà a stato basso il suo pin Echo

(che nel frattempo era stato portato automaticamente alto).

Misurando il tempo che intercorre tra l’emissione del segnale sonoro ed il suo ritorno si può calcolare la distanza dell’ostacolo

sul quale è rimbalzato.

La velocità del suono varia a seconda del mezzo (ad esempio, il suono si propaga più velocemente nell’acqua che non nell’aria), e

anche al variare delle proprietà del mezzo, specialmente con la sua temperatura.

Nel caso dell’aria la velocità del suono è di 331,2 metri al secondo (1 192,32 km/h) a 0 °C e di 343,1 m/s (1 235,16 km/h) a 20 °C.

Convertiamo la velocità del suono da 343,1 m/s a 0,03431 cm/microsecondi.

Nel moto uniforme abbiamo: S= v x t  S(cm) = 0,03431 x t (con t in microsecondi)

Poichè la distanza percorsa dal suono è doppia rispetto alla distanza dell’ostacolo (l’impulso sonoro deve andare verso l’ostacolo

e tornare indietro) la nuova formula diventa:

S = 0.03431 x t / 2 = 0,017155 x t = t / 58.3 (cm)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 102

In sintesi, per utilizzare il sensore, dobbiamo inviare un impulso di 10 ms sul pin Trig e calcolare il tempo che impiega il sensore a

rilevare il segnale di ritorno (quindi dopo quanto tempo si porterà basso il pin Echo del sensore).

Il comando che si occuperà di contare il tempo che impiega l’impulso ad andare e ritornare è:

tempo = pulseIn(echoPin, HIGH)

La massima distanza di lavoro del sensore è 400 cm (poco meno di 24 ms); automaticamente il pin Echo dopo 38ms passa basso

ed il segnale emesso deve essere considerato perso (bersaglio non presente).

Si devono aspettare almeno 50ms tra un invio di impulso ed un altro, per evitare che echi di vecchi impulsi siano erroneamente

letti come validi e dare false letture.

Gli ostacoli da rilevare devono inoltre stare all’interno di un cono di 30° come da foto

Lo sketch da caricare nel nostro Arduino è:

#define trigPin 6

#define echoPin 7

long durata, cm;

void setup() {

 Serial.begin(9600);

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

}

void loop()

{

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 durata = pulseIn(echoPin, HIGH);

 cm = durata / 58; // per i pollici la formula è durata / 148;

 Serial.print("Cm = ");

 Serial.println(cm);

 Serial.println();

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 103

SCHEMA – ESP32 CON SENSORE A ULTRASUONI HC-SR04

Il sensore HC-SR04 funziona anche a 3.3V e quindi può essere conesso ad un micro ESP32.

Il codice è lo stesso di Arduino. Cambiano solo i PIN utlizzati.

Collegare il sensore a ultrasuoni HC-SR04 all'ESP32 come mostrato nel seguente schema elettrico.

Sensore a ultrasuoni ESP32
VCC Numero di telaio
Trigger GPIO 5
Echo GPIO 18
Terra Terra

#define trigPin 5

#define echoPin 18

long durata, cm;

void setup() {

 Serial.begin(9600);

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

}

void loop()

{

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 durata = pulseIn(echoPin, HIGH);

 cm = durata / 58; // per i pollici la formula è durata / 148;

 Serial.print("Cm = ");

 Serial.println(cm);

 Serial.println();

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 104

ESERCIZIO THINKERCAD MISURA DISTANZA CON SENSORE ULTRASUONI

Thinkercad non simula il sensore HC-SR04 ma un modello diverso a 3 pin. Il pin SIG viene utilizzato sia come TRIG che ECHO.

CODICE

int cm = 0;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 // measure the ping time in cm
 cm = readUltrasonicDistance(7, 7);
 Serial.print(cm);
 Serial.println("cm");
 delay(500); // Wait for 100 millisecond(s)
}

long readUltrasonicDistance(int triggerPin, int echoPin)
{
 pinMode(triggerPin, OUTPUT); // Clear the trigger
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 // Sets the trigger pin to HIGH state for 10 microseconds
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 pinMode(echoPin, INPUT);
 // Reads the echo pin, and returns the sound wave travel time in microsecondo
 // measure the ping time in cm  d= velocità suono * tempo
 return (0.01723 * pulseIn(echoPin, HIGH));
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 105

⌂
SISTEMI DI MOVIMENTAZIONE

- NASTRO TRASPORTATORE

- GUIDA LINEARE

I sistemi di movimentazione e posizionamento nell'automazione industriale sono tecnologie che automatizzano lo spostamento

e il posizionamento preciso di materiali e prodotti, riducendo l'intervento umano e aumentando efficienza, velocità e sicurezza

tramite componenti meccatronici.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 106

IL NASTRO TRASPORTATORE

Un nastro trasportatore è un dispositivo meccanico utilizzato per il trasporto continuo di oggetti o materiali da un punto all'altro,

tipicamente in contesti di produzione industriale, logistica o movimentazione di grandi quantità di materiale.

Componenti e Funzionamento

Il nastro trasportatore è un sistema relativamente semplice ma molto efficiente, composto essenzialmente dai seguenti
elementi:

 Nastro (o Tappeto): È la superficie flessibile (spesso in gomma, PVC, poliuretano, o metallo) che trasporta fisicamente il
materiale. Forma un anello continuo.

 Tamburo Motore (o Puleggia Motrice): Un cilindro collegato a un motore elettrico che, ruotando, imprime la trazione e
il movimento al nastro.

 Tamburo di Rinvio (o Puleggia di Rinvio): Un cilindro folle posto all'estremità opposta che supporta il nastro e aiuta a
mantenerlo in tensione.

 Rulli (o Rulliere): Cilindri di supporto posti lungo il percorso per sostenere il nastro (sia sul lato di trasporto che su quello
di ritorno) e prevenire l'afflosciamento, specialmente con carichi pesanti.

 Telaio: La struttura metallica che sostiene tutti i componenti.

ESERCIZIO

 regolare la velocità del nastro e il verso di rotazione

 individuare la presenza di un pezzo

 rilevare la distanza del pezzo

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 107

MONITORARE STATO SENSORI SENZA BLOCCARE IL CODICE

L’obiettivo è spegnere il motore quando viene premuto il finecorsa meccanico e vogliamo stampare lo stato del sensore ogni 2

secondi senza bloccare il programma.

int pinFC1 = 4; // finecorsa meccanico
int pinMotore = 3; // alimentazione motore
int statoFC1=1;

long intervalloStampa = 2000; // 2 secondi
long tempoPrecedenteStampa = 0;

void setup() {
 Serial.begin(9600);
 pinMode(pinFC1, INPUT_PULLUP);
 pinMode(pinMotore, OUTPUT);
}

void loop() {
 //stato finecorsa
 statoFC1 = digitalRead(pinFC1);
 // se finecorsa premuto (logica invertica dovuta all’uso del PULL_UP  LOW) spengo motore
 if (statoFC1== LOW) {
 digitalWrite(pinMotore, LOW); // spengo
 }
 else {
 analogWrite(pinMotore, 100); // accendo al minimo
 }

 // tempo attuale
 long tempoCorrente = millis();

 //Stampa dello stato ogni 2 secondi
 if (tempoCorrente - tempoPrecedenteStampa >= intervalloStampa) {
 tempoPrecedenteStampa = tempoCorrente; // aggiorno tempo stampa
 Serial.println(statoFC1 == HIGH ? "NON ATTIVO" : "ATTIVO");
 }
}

La lettura dello stato del finecorsa viene fatta in tempo reale (< 1ms) mentre la stampa solo ogni 2 secondi.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 108

Generalmente un sensore di qualsiasi tipo non ha un tempo di risposta nullo ma variabile da meno di 1ms fino a centinaia di ms
e oltre. Di conseguenza non ha senso leggere lo stato del sensore in tempo reale ma a cadenza fissata.

Il codice seguente legge lo stato del finecorsa solo ogni 100ms.

int pinFC1 = 4; // finecorsa meccanico
int pinMotore = 3; // alimentazione motore
long tempoPrecedenteLettura = 0;
long tempoPrecedenteStampa = 0;
int statoFC1=1;

// Intervalli in millisecondi
int intervalloLettura = 100; // 0.1 secondi
int intervalloStampa = 2000; // 2 secondi

void setup() {
 Serial.begin(9600);
 pinMode(pinFC1, INPUT_PULLUP);
 pinMode(pinMotore, OUTPUT);
}

void loop() {
 long tempoCorrente = millis();

 // Lettura sensori ogni 0.1 secondi
 if (tempoCorrente - tempoPrecedenteLettura >= intervalloLettura) {
 tempoPrecedenteLettura = tempoCorrente;
 //stato finecorsa
 statoFC1 = digitalRead(pinFC1);
 if (statoFC1== LOW) {
 digitalWrite(pinMotore, LOW); // spengo
 }
 else {
 analogWrite(pinMotore, 100); // accendo al minimo
 }
 }

 //Stampa dello stato ogni 2 secondi
 if (tempoCorrente - tempoPrecedenteStampa >= intervalloStampa) {
 tempoPrecedenteStampa = tempoCorrente; // aggiorno tempo stampa
 Serial.println(statoFC1 == HIGH ? "NON ATTIVO" : "ATTIVO");
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 109

GUIDA LINEARE

Una guida lineare è un dispositivo che permette di movimentare un piano di appoggio lungo un percorso rettilineo in entrambe le direzioni.

La traslazione può essere realizzata in vari modi, ad esempio attraverso una cinghia dentata (alta velocità e bassa precisione) o tramite una barra

filettata (maggiore precisione e minore velocità).

La figura mostra con trasmissione a cinghia dentata GT2 e pulegge a 40 denti alle estrmità del profilato TSLOT 2040.

Viene impiegato un motoriduttore CC JGB37-52 e dei finecorsa meccanici su entrambi i lati.

I finecorsa hanno lo scopo di bloccare il motore quando la piastra mobile raggiungè le estremità del profilato.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 110

CONTROLLO VERSO ROTAZIONE MOTORE

Attraverso due relè a doppio contatto è possibile comandare il verso di rotazione di un motore in tensione continua.

Col circuito sottostante se gli interruttori sono entrambi aperti o entrambi chiusi il motore è fermo.

Analizziamo cosa succede se chiudiamo l’interruttore di sinistra.

La bobina del relè di sinistra viene attivata e viene chiuso il contatto na del relè. La corrente fluisce attaverso il contatto appena

chiuso e entra nel polo + motore del motore. Esce dal motore e va a massa tramite il contatto nc del relè di destra.

Il motore ruota in senso ORARIO.

Se chiudiamo solo l’interruttore di destra la corrente entrerà nel motore dal polo –. Il motore ruota in senso ANTIORARIO.

RELE A DOPPIO CONTATTO

 c  contatto comune

 nc  contatto normalmente chiuso

 na  contatto normalmente aperto

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 111

GESTIONE GUIDA LINEARE

La guida lineare con trasmissione a cinghia GT2 è dotata di due finecorsa meccanici (passive) fissati alle estremità per rilevare le

posizioni limite DX e SX della guida.

I cavi giallo e verde dei finecorsa portanon essere collegati ad Arduino in modalità pullup interna in modo da rilevare lo stato

(0=chiuso, 1=aperto). In cavo andrà a massa e l’altro in un PIN digitale.

Il movimento della guida viene gestito dal Motorshield che consente di regolare la velocità e il verso di rotazione del

motoriduttore collegato alla guida.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 112

#include <Adafruit_MotorShield.h>

// Create oggetto shield AFMS con indirizzo I2C di default

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

// Seleziona la porta dello shield (M1, M2, M3 or M4) a cui è connesso il motore

Adafruit_DCMotor *myMotor = AFMS.getMotor(2);

const int btnOn = 11; // pin per pulsante avvio

const int fDX = 12; // Pin per il finecorsa destro

const int fSX = 13; // Pin per il finecorsa sinistro

// Variabili di stato

int direzioneCorrente = 1; // 1 = Destra, -1 = Sinistra

const int velocitaMotore = 150; // Velocità del motore (0-255)

void setup() {

 pinMode(btnOn, INPUT_PULLUP);

 // finecorsa meccanici passivi connessi modalità pullup

 pinMode(fDX, INPUT_PULLUP); pinMode(fSX, INPUT_PULLUP);

 // Avvia la comunicazione seriale per il debug (opzionale)

 Serial.begin(9600);

 Serial.println("Avvio programma Guida Lineare.");

 // attivo shield con frequenza di default 1.6KHz

 if (!AFMS.begin()) {

 Serial.println("Motor Shield non trovato. Controllare cavi!");

 while (1);

 }

 Serial.println("Motor Shield trovato.");

 myMotor->run(RELEASE); // spengo motore

}

void loop() {

 int statoOn = digitalRead(btnOn);

 //Serial.println(statoOn);

 // Legge lo stato dei finecorsa (0 --> premuto).

 int statoDx = digitalRead(fDX); int statoSx = digitalRead(fSX);

 //Serial.print(statoSx);Serial.println(statoDx);

 if (statoOn==0) {

 muoviMotore(direzioneCorrente);

 // 1. Controllo Finecorsa Destro

 if (statoDx == LOW) {

 // Se il finecorsa destro è premuto E il motore si sta muovendo a destra

 if (direzioneCorrente == 1) {

 Serial.println("Limite Destro raggiunto. Inversione direzione.");

 fermaMotore(); delay(1000); // Breve pausa

 // Inverte la direzione

 direzioneCorrente = -1; // Muovi a Sinistra

 muoviMotore(direzioneCorrente);

 }

 }

 // 2. Controllo Finecorsa Sinistro

 else if (statoSx == LOW) {

 // Se il finecorsa sinistro è premuto e il motore si sta muovendo a sinistra

 if (direzioneCorrente == -1) {

 Serial.println("Limite Sinistro raggiunto. Inversione direzione.");

 fermaMotore(); delay(1000); // Breve pausa

 // Inverte la direzione

 direzioneCorrente = 1; // Muovi a Destra

 muoviMotore(direzioneCorrente);

 }

 }

 }

 else { fermaMotore(); }

 delay(1);

}

// Funzione per controllare la direzione del motore

void muoviMotore(int direzione) {

 myMotor->setSpeed(velocitaMotore);

 // Movimento a Destra

 if (direzione == 1) { myMotor->run(FORWARD); }

 // Movimento a Sinistra

 else if (direzione == -1) { myMotor->run(BACKWARD);

 // In caso di errore fermo motore (per sicurezza)

 } else { fermaMotore(); }

}

// Funzione per fermare il motore

void fermaMotore() {

 myMotor->run(RELEASE);

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 113

⌂
SISTEMI DI SUPERVISIONE

SCADA

SCADA è l'acronimo di Supervisory Control and Data Acquisition (controllo di supervisione e acquisizione dati) e si riferisce a un

sistema informatico che monitora e controlla processi industriali anche da remoto.

Questi sistemi raccolgono dati da sensori, li centralizzano su un server e li visualizzano tramite un'interfaccia grafica (HMI),

permettendo di controllare e analizzare lo stato di macchinari e impianti in tempo reale.

Qualsiasi impianto moderno è dotato di un sistema SCADA più o meno complesso per monitorare il funzionamento

dell’impianto.

Il controllo degli attuatori in generale è realizzato mediante comandi fisici cablati ma spesso è affiancato da comandi virtuali via

software (con connessione con o senza fili).

Sistema di supervisione di un impianto chimico

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 114

LINGUAGGIO HTML

HTML sta per Hypertext Markup Language (linguaggio a marcatori per ipertesti) ed è il linguaggio standard per creare la

struttura e il contenuto delle pagine web. Viene utilizzato per definire elementi come testo, immagini, link e video tramite una

serie di tag, che i browser interpretano per visualizzare la pagina web all'utente.

Non è un linguaggio di programmazione, ma un linguaggio di markup per formattare e strutturare i contenuti.

L’esempio sottostante mostra una semplice pagina html necessaria ad attivare e disattivare un motore CC.

Solo il testo in “rosso” viene visualizzato quando la pagina viene aperta in un browser come Chrome, Edge ecc. .

Un browser quindi è una applicazione in grado di interpretare e visualizzare correttamente una pagina HTML.

Il resto del testo e i marcatori che “circondano” il testo in rosso servono ad indicare le modalità di interpretazione e

visualizzazione dei testi in rosso.

Ad esempio
 <p>testo</p>  indica un paragrafo
 [START]  indica che il testo è un link (è cliccabile)
<hr>  indica di andare a capo
<title>Controllo motore</title>  titolo della pagina (non viene visualizzato)

Il resto del testo serve a definire le caratteristiche principali della pagina html ed è sempre presente. Il minimo indispensabile è:

<html>
<body>
 Hello world!
</body>
</html>

ESEMPIO PAGINA HTML

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="UTF-8">
 <title>Controllo motore</title>
</head>
<body>
 <h1>Controllo Motore CC</h1>
 <p>Stato Relè: DISATTIVATO</p>
 <hr>
 <p>
 [START]
 [STOP]
 </p>
 <hr>
 <p>Ricaricare la pagina per aggiornare lo stato.</p>
</body>
</html>

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 115

MARCATORI STRUTTURALI PRINCIPALI

Questi tag definiscono la struttura fondamentale di un documento HTML.

Tag Spiegazione Esempio (Codice) Risultato (Visualizzazione)

<!DOCTYPE
html>

Definisce il tipo di documento e la versione di HTML
(HTML5). Va all'inizio.

<!DOCTYPE html> Non viene visualizzato.

<html> L'elemento radice di ogni pagina HTML. Contiene tutti
gli altri elementi HTML.

<html>...</html> Non direttamente
visualizzato, ma essenziale.

<head> Contiene metadati sul documento (titolo, link a CSS,
codifica, ecc.), non visibili nel corpo della pagina.

<head>...</head> Non direttamente
visualizzato.

<title> Definisce il titolo che appare nella scheda del browser
o nei risultati di ricerca.

<title>Mia
Pagina</title>

Mia Pagina (nella scheda del
browser)

<body> Contiene tutto il contenuto visibile della pagina web
(testo, immagini, link, ecc.).

<body>...</body> Tutto il contenuto visibile
della pagina.

PRINCIPALI MARCATORI DI CONTENUTO E FORMATTAZIONE

Questi tag sono usati per definire e strutturare il contenuto all'interno del <body>.

Tag Spiegazione Esempio (Codice) Risultato

<h1> a
<h6>

Definiscono le intestazioni (titoli e
sottotitoli). <h1> è il più importante (più
grande), <h6> il meno.

<h1>Titolo Principale</h1> Titolo Principale

(Grande e in grassetto)

<p> Definisce un paragrafo di testo. <p>Questo è un paragrafo.</p> Questo è un paragrafo.

 Manda a capo il testo. È un tag auto-
chiudente.

Vado
a capo Vado
a capo

<a> Definisce un collegamento ipertestuale
(link). L'attributo href specifica l'URL di
destinazione.

Vai a Google Vai a Google

 Incorpora un'immagine. È un tag auto-
chiudente. Gli attributi src e alt sono
fondamentali.

<hr> Inserisce una linea orizzontale (separatore
tematico). È un tag auto-chiudente.

<p>Sezione 1</p><hr><p>Sezione 2</p>

 Rende il testo in grassetto (storicamente
per bold).

Testo in grassetto Testo in grassetto

<sub>
<sup>

Definisce un testo come pedice o apice H₂O
E = mc²

H₂O
E = mc²

https://www.google.it/

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 116

MARCATORI DI STILE

Tramite opportuni marcatori è possible dare alla pagina un aspetto più professionale.

In questo caso sono nella pagina html sono presenti dei marcatori di stile che permettono di ottenere effetti grafici tipici delle

applicazioni desktop.

 <style>
 body { font-family: Arial, sans-serif; text-align: center; margin-top: 50px; }
 .button {
 padding: 10px 20px;
 font-size: 15px;
 cursor: pointer;
 margin: 10px;
 border: none;
 border-radius: 8px;
 text-decoration: none;
 color: white;
 display: inline-block;
 }
 .start-btn { background-color: #4CAF50; }
 .stop-btn { background-color: #f44336; }
 .status { font-size: 24px; margin: 20px; }
 .slider-container { margin: 30px auto; width: 80%; max-width: 400px; padding: 20px; border: 1px solid #ccc;
border-radius: 10px;}
 .slider-label { margin-bottom: 10px; font-weight: bold; }
 .slider-value { font-size: 20px; color: #007bff; }
 </style>

WEB SERVER

Un web server è un software che gestisce le richieste di trasferimento di pagine html da parte dei client (come i browser)

inviando loro il contenuto richiesto tramite il protocollo HTTP.

E’ possibile creare una pagina html interattiva che permette di inviare comandi ad un microcontrollore e ricevere da esso dei

feedback. In questo caso il microcontrollore farà da web server ed eseguire il programma che invia ai client (PC, telefono ecc.) la

pagina HTML.

Quindi con un webserver e una pagina HTML è possibile realizzare un semplice SCADA.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 117

ESP32 S3

ESP32-S3 è un MCU XTensa LX7 dual-core, in grado di funzionare a 240 MHz. Oltre ai 512 KB di SRAM interna, è dotato di

connettività Wi-Fi 802.11 b/g/n a 2,4 GHz e Bluetooth 5 (LE) integrata che fornisce supporto a lungo raggio. Dispone di 45 GPIO

programmabili e supporta un ricco set di periferiche. ESP32-S3 supporta una memoria flash SPI ottale ad alta velocità e PSRAM

con cache dati e istruzioni configurabile.

WI-FI + BLUETOOTH 5 (LE)

ESP32-S3 supporta una connessione Wi-Fi a 2,4 GHz (802.11 b/g/n) con 40 MHz di larghezza di banda. Il sottosistema Bluetooth

Low Energy supporta una lunga portata tramite Coded PHY e l'estensione pubblicitaria. Supporta inoltre velocità di trasmissione

e throughput dati più elevati, con 2 Mbps di PHY. Sia il Wi-Fi che il Bluetooth LE offrono prestazioni RF superiori, mantenute

anche ad alte temperature.

SICUREZZA

ESP32-S3 fornisce tutti i requisiti di sicurezza necessari per la realizzazione di dispositivi connessi in modo sicuro, senza

richiedere componenti esterni. Supporta la crittografia flash basata su AES-XTS, l'avvio sicuro basato su RSA, la firma digitale e

l'HMAC. ESP32-S3 dispone inoltre di una periferica "World Controller" che fornisce due ambienti di esecuzione completamente

isolati, consentendo l'implementazione di un ambiente di esecuzione attendibile o di uno schema di separazione dei privilegi.

PINOUT ESP32-S3 DEVKITC-1 (ESPRESSIF SYSTEMS)

Per programmare l'ESP32-S3 DevKitC con l'IDE di Arduino, puoi usare una qualsiasi delle due porte USB-C, che servono sia per

l'alimentazione sia per la comunicazione con il PC per caricare il codice. La scheda, come molte altre ESP32, ha questa doppia

funzionalità.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 118

D1 R32

E’ una scheda con il layout tipico di Arduino Uno creata attorno al chip ESP32 WROOM-32, contenente un regolatore di

tensione, un circuito programmatore USB per il chip ESP32 e molte altre funzioni.

Per lo sviluppo di applicazioni è possibile scegliere tra Arduino IDE o ESPIDF (piattaforma nativa).

D1 R32 viene fornito con un firmware preinstallato che consente di lavorare con il linguaggio interpretato, inviando comandi

attraverso la porta seriale (chip CH340).

La scheda D1 R32 è stata progettata per funzionare con diverse periferiche ed è compatibile con alcuni shield progettati

appositamente per questa scheda. È dotata di un regolatore di tensione che le consente di alimentarsi direttamente dalla porta

USB o dalla presa per un jack CC. I pin di ingresso/uscita funzionano a 3,3V. Il chip CH340 è responsabile della comunicazione

USB-seriale.

Prestare attenzione che la numerazione dei PIN di Arduino è diversa da quella dell’ESP32.

Ad esempio per lo “shield relè” i pin di comando 4-5-6-7 dei relè diventano 17-16-27-14.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 119

CONTROLLO MOTORE CC CON SENSORE INFRAROSSI E18-D80NK (NPN)

Codice HTLM

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="UTF-8">
 <title>Controllo motore</title>
</head>
<body>
 <h2>Controllo Motore</h2>
 <p>Stato sensore: DISATTIVO</p>
 <hr>
 <p>
 [START]
 [STOP]
 </p>
 <hr>
 <p>Ricarica la pagina</p>
</body>
</html>

Aperto con l’editor di testo Notepad++:

Aperto con un browser:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 120

Quando ci connettiamo ad internet tramite un PC o uno smartphone digitiamo in un browser l’indirizzo del sito web che ci

interessa (ad es. www.google.it). In questo modo il sito web (o meglio il programma web server che è in funzione sul computer

che ospita il sito) ci risponde con una pagina HTML.

Il nostro PC deve prima di tutto essere connesso alla rete locale tramite un HOTSPOT (è un punto di accesso a Internet via Wi-Fi).

Il microprocessore ESP32 può fare sia da HOTSPOT che da web server. Quindi dopo che ci si connette all’HOTSPOT (ssid =

"castelli) è possibile richiamare la pagina di controllo del motore digitando l’indirizzo programmato (192.168.4.1).

Nella pagina html per il controllo del motore sono presenti 3 link che utilizziamo per:

 avviare il motore  [START]

 spegnere il motore  [STOP]

 ricaricare la pagina (aggiorna stato del sensore)  >Ricarica la pagina

I link di avvio e spegnimento contengono nel marcatore <a href> i testi “/start” e “/stop”.
Questi testi vengono inviati al web server insieme all’indirizzo e vengono usati per discriminare l’azione da eseguire:

 [START]  chiama la funzione handleStart (avvia motore)

 [STOP]  chiama la funzione handleStop (spegne motore)

Il testo in rosso nella riga

<p>Stato sensore: DISATTIVO</p>

deve essere aggiornato ogni volta che viene chiamata la pagina html tramite il browser; ciò viene fatto nella funzione

getHtmlPage()

tramite il comando

html += statoSensore ? "DISATTIVO" : "ATTIVO";  torna il testo “DISATTIVO” se stato Sensore=true se no ATTIVO

http://www.google.it/

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 121

Codice Arduino

#include <WiFi.h>

#include <WebServer.h>

// --- CONFIGURAZIONE WIFI HOTSPOT ---

const char *ssid = "castelli";

const char *password = "12345678";

// Porta HTTP standard

WebServer server(80);

// Pin del motore

const int MOTORE_PIN = 16; // Utilizziamo GPIO 16

const int SENSORE_PIN = 17; // Utilizziamo GPIO 17

// Stato del motore

bool statoMotore = false;

int statoSensore = 1;

// Funzione per impostare lo stato del relè (Attivo LOW)

void avviaMotore(bool state) {

 statoMotore = state;

 if (state) {

 digitalWrite(MOTORE_PIN, HIGH); // Attiva

 } else {

 digitalWrite(MOTORE_PIN, LOW); // Disattiva

 }

}

// Funzione richiamata all'accesso alla root ("/")

void handleRoot() {

 // Importante: specifica la codifica UTF-8 per gli accenti

 //server.send(200, "text/html; charset=utf-8", getHtmlPage());

 server.send(200, "text/html", getHtmlPage());

}

// Funzione richiamata quando si preme il pulsante START

void handleStart() {

 avviaMotore(true);

 server.send(200, "text/html", getHtmlPage());

}

// Funzione richiamata quando si preme il pulsante STOP

void handleStop() {

 avviaMotore(false);

 server.send(200, "text/html", getHtmlPage());

}

// Funzione per generare la pagina HTML

String getHtmlPage() {

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 122

 statoSensore= digitalRead(SENSORE_PIN);

 String html = R"rawliteral(

<!DOCTYPE html>

<html>

<head>

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <meta charset="UTF-8">

 <title>Controllo motore</title>

</head>

<body>

 <h2>Controllo Motore</h2>

 <p>Stato sensore:)rawliteral";

 html += statoSensore ? "DISATTIVO" : "ATTIVO";

 html += R"rawliteral(</p>

 <hr>

 <p>

 [START]

 [STOP]

 </p>

 <hr>

 <p>Ricarica la pagina</p>

</body>

</html>

)rawliteral";

 return html;

}

void setup() {

 Serial.begin(115200);

 pinMode(MOTORE_PIN, OUTPUT);

 pinMode(SENSORE_PIN, INPUT_PULLUP);

 avviaMotore(false);

 // --- 1. Configurazione come Access Point (Hotspot) ---

 Serial.print("Configurazione Hotspot... SSID: ");

 Serial.println(ssid);

 if (WiFi.softAP(ssid, password)) {

 Serial.println("Hotspot creato con successo! IP: 192.168.4.1");

 } else {

 Serial.println("Errore nella configurazione dell'Hotspot.");

 }

 // --- 2. Configurazione del Web Server ---

 server.on("/", HTTP_GET, handleRoot);

 server.on("/start", HTTP_GET, handleStart);

 server.on("/stop", HTTP_GET, handleStop);

 server.begin();

 Serial.println("Server HTTP avviato sulla porta 80");

}

void loop() {

 // Gestisce le richieste della pagina html

 server.handleClient();

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 123

CONTROLLO CILINDRO PNEUMATICO CON SENSORI REED

Un classico sensore reed attivo per automazione industriale necessita una alimentazione dedicata a 24V.

Il micro ESP32 lavora invece con una tensione di 3.3V (un segnale in ingresso viene rilevato ALTO se risulta <=2.5V).

Risulta necessario quindi adattare il livello logico del sensore (24V) con quello del micro (3.3V). Il metodo più semplice è quello

di utilizzare un partitore di tensione:

Domanda: se utilizziamo Arduino che lavora a 5V quanto devono valere le resistenze?

CABLAGGIO EPS32 D1 R32 CON RELE SHIELD:

Ricordarsi di collegare la massa del micro con quella del generatore esterno a 24V.

Lo stato dei sensori viene letto sui PIN 18 e 19. I pin 17-16-27-14 attivano i relè.

PIN

Utilizzando una coppia di resistenze si deve

ottenere una tensione di uscita

2,5< Vout<3,3V

che potrà essere letta in sicurezza dal micro.

In assenza di tensione verrà letto 0V (massa).

Partitori di tensione in serie
al sensore reed

Sensore
(+ marrone)

Generatore
24V

masse

Sensore attivo

ingresso

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 124

#include <WiFi.h>

#include <WebServer.h>

// --- CONFIGURAZIONE WIFI HOTSPOT ---
const char *ssid = "castelli";
const char *password = "12345678"; // min 8 char se no dà errore

// Porta HTTP standard
WebServer server(80);

// Pin dei relè shield
const int RELAY_PIN4 = 17;
const int RELAY_PIN5 = 16;
const int RELAY_PIN6 = 27;
const int RELAY_PIN7 = 14;

// Pin dei sensori in modalità pullup
const int Apiu_PIN = 18;
const int Ameno_PIN = 19;

// Variabili per Stati
int statoApiu= HIGH;
int statoAmeno= HIGH;

// NUOVA Funzione per generare il contenuto del Frame
String getStatusFrameHtml() {
 // Legge lo stato attuale del finecorsa
 //bool limitSwitchActive = (digitalRead(LIMIT_SWITCH_PIN) == LOW);
 statoApiu= digitalRead(Apiu_PIN);
 statoAmeno= digitalRead(Ameno_PIN);

 String html = R"rawliteral(
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="UTF-8">
 <title>Stato Finecorsa</title>
 <meta http-equiv="refresh" content="1">
</head>
<body style="font-size: 1.2rem;">)rawliteral";
 // Stato Finecorsa
 html += "Stato a0= ";
 html += statoApiu ? "PRESENTE" : "LIBERO";
 html += "
";
 html += "Stato a1= ";
 html += statoAmeno ? "PRESENTE" : "LIBERO";
 html += R"rawliteral(
</body>
</html>
)rawliteral";
 return html;
}

// Funzione per generare la pagina HTML con lo slider
String getHtmlPage() {
 String html = R"rawliteral(
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="UTF-8">
 <title>Cilindro ESP32</title>
 </head>
<body style="font-size: 1.2rem;">
 <h1>Cilindro</h1>
 <p>

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 125

 <a href="/apiu" style="display:inline-block;padding:0.5rem 1rem;border:1px solid #007aff;border-
radius:9999px;background:transparent;color:#007aff;text-decoration:none;">Esegui A+
 <a href="/ameno" style="display:inline-block;padding:0.5rem 1rem;border:1px solid #007aff;border-
radius:9999px;background:transparent;color:#007aff;text-decoration:none;">Esegui A-

 <a href="/spegni" style="display:inline-block;padding:0.5rem 1rem;border:none;border-
radius:9999px;background:#007aff;color:#fff;text-decoration:none;">Spegni
 </p>
 </br>
 <p>Stato Finecorsa:
 <iframe id="finecorsa-frame" src="/status_frame" width="300" height="70" frameborder="0">
 Caricamento stato...
 </iframe>
 </p>
</body>
</html>

)rawliteral";

/*
 html += "<p>Stato a0= ";
 html += statoApiu ? "ATTIVO" : "DISATTIVO";
 html += "
";
 html += "Stato a1= ";
 html += statoAmeno ? "ATTIVO" : "DISATTIVO";
 html += "</p>";

 html += R"rawliteral(
 <p>Aggiorna pagina</p>
</body>
</html>
)rawliteral";
*/

 return html;
}

// Funzione di utilità per impostare lo stato del relè
void setApiu(bool state) {
 statoApiu = state;
 if (state) {
 digitalWrite(RELAY_PIN4, HIGH);
 } else {
 digitalWrite(RELAY_PIN4, LOW);
 }
}

void setAmeno(bool state) {
 statoAmeno = state;
 if (state) {
 digitalWrite(RELAY_PIN5, HIGH);
 } else {
 digitalWrite(RELAY_PIN5, LOW);
 }
}

// Funzione richiamata all'accesso alla root ("/")
void handleRoot() {
 server.send(200, "text/html", getHtmlPage());
}

// Funzione richiamata quando si preme il pulsante Apiu
void handleApiu() {
 setApiu(true);
 setAmeno(false);
 server.sendHeader("Location", "/"); // Reindirizza per aggiornare la pagina
 server.send(303);
}

// Funzione richiamata quando si preme il pulsante Ameno

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 126

void handleAmeno() {
 setAmeno(true);
 setApiu(false);
 server.sendHeader("Location", "/");
 server.send(303);
}

// Funzione richiamata quando si preme il pulsante Ameno
void handleSpegni() {
 setAmeno(false);
 setApiu(false);
 server.sendHeader("Location", "/");
 server.send(303);
}

// Funzione richiamata per l'iFrame - Contiene SOLO lo stato che si aggiorna
void handleStatusFrame() {
 server.send(200, "text/html; charset=utf-8", getStatusFrameHtml());
}

void setup() {
 Serial.begin(115200);

 pinMode(RELAY_PIN4, OUTPUT);
 pinMode(RELAY_PIN5, OUTPUT);
 pinMode(RELAY_PIN6, OUTPUT);
 pinMode(RELAY_PIN7, OUTPUT);
 pinMode(Apiu_PIN, INPUT);
 pinMode(Ameno_PIN, INPUT);

 setApiu(false);
 setAmeno(false);

 // 1. Configurazione come Access Point (Hotspot)
 if (WiFi.softAP(ssid, password)) {
 Serial.println("Hotspot creato con successo! IP: 192.168.4.1");
 } else {
 Serial.println("Errore nella configurazione dell'Hotspot.");
 }

 // 2. Configurazione del Web Server
 server.on("/", HTTP_GET, handleRoot);
 server.on("/apiu", HTTP_GET, handleApiu);
 server.on("/ameno", HTTP_GET, handleAmeno);
 server.on("/spegni", HTTP_GET, handleSpegni);
 server.on("/status_frame", HTTP_GET, handleStatusFrame); //IFRAME

 server.begin();
 Serial.println("Server HTTP avviato sulla porta 80");
}

void loop() {
 server.handleClient();
 delay(10);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 127

WEBSERVER ESP32 PER CONTROLLO MOTORE CC

#include <WiFi.h>
#include <WebServer.h>

// --- CONFIGURAZIONE WIFI HOTSPOT ---
const char *ssid = "castelli";
const char *password = "12345678";

// Porta HTTP standard
WebServer server(80);

// Pin del motore
const int MOTORE_PIN = 16; // Utilizziamo GPIO 16

// Stato del motore
bool statoMotore = false;

// Funzione per impostare lo stato del relè (Attivo LOW)
void avviaMotore(bool state) {
 statoMotore = state;
 if (state) {
 digitalWrite(MOTORE_PIN, HIGH); // Attiva
 } else {
 digitalWrite(MOTORE_PIN, LOW); // Disattiva
 }
}

// Funzione richiamata all'accesso alla root ("/")
void handleRoot() {
 // Importante: specifica la codifica UTF-8 per gli accenti
 server.send(200, "text/html; charset=utf-8", getHtmlPage());
}

// Funzione richiamata quando si preme il pulsante START
void handleStart() {
 avviaMotore(true);
 server.sendHeader("Location", "/"); // Reindirizza a "/" dopo l'azione
 server.send(303);
}

// Funzione richiamata quando si preme il pulsante STOP
void handleStop() {
 avviaMotore(false);
 server.sendHeader("Location", "/"); // Reindirizza a "/" dopo l'azione
 server.send(303);
}

// Funzione per generare la pagina HTML ultra-semplice
String getHtmlPage() {
 String html = R"rawliteral(
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="UTF-8">
 <title>Controllo motore</title>
</head>
<body>
 <h1>Controllo Motore CC</h1>
 <p>Stato Relè:)rawliteral";

 // Inserisce lo stato attuale
 html += statoMotore ? "ATTIVO" : "DISATTIVO";

 html += R"rawliteral(</p>
 <hr>
 <p>
 [START]
 [STOP]
 </p>
 <hr>
 <p>Ricarica la pagina per aggiornare lo stato.</p>
</body>
</html>
)rawliteral";
 return html;

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 128

}

void setup() {
 Serial.begin(115200);
 pinMode(MOTORE_PIN, OUTPUT);
 avviaMotore(false);

 // --- 1. Configurazione come Access Point (Hotspot) ---
 Serial.print("Configurazione Hotspot... SSID: ");
 Serial.println(ssid);

 if (WiFi.softAP(ssid, password)) {
 Serial.println("Hotspot creato con successo! IP: 192.168.4.1");
 } else {
 Serial.println("Errore nella configurazione dell'Hotspot.");
 }

 // --- 2. Configurazione del Web Server ---
 server.on("/", HTTP_GET, handleRoot);
 server.on("/start", HTTP_GET, handleStart);
 server.on("/stop", HTTP_GET, handleStop);

 server.begin();
 Serial.println("Server HTTP avviato sulla porta 80");
}

void loop() {
 // Gestisce le richieste HTTP
 server.handleClient();
}

ISTRUZIONE = R"RAWLITERAL()RAWLITERAL";

Nel C++ di Arduino, la parola chiave R"()" (rawliteral) consente di definire stringhe letterali senza interpretare caratteri di escape

come \n o \t. Questo significa che i caratteri di escape vengono trattati come caratteri letterali all'interno della stringa.

Viene utilizzata per inserire pagine html all’interno del codice Arduino in modo semplice.

String html = R"rawliteral(

 pagina html …..

)rawliteral";

OPERATORE CONDIZIONALE TERNARIO

Funziona come un'istruzione if-else condensata:

HTML = HTML & relayState ? "ATTIVO" : "DISATTIVO":

Aggiunge la parola "ATTIVO" alla stringa HTML se il relè è acceso (relayState è true), oppure aggiunge la parola

"DISATTIVO" se il relè è spento (relayState è false).

Questo operatore ci permette di modificare il contenuto della pagina HTML sulla base dei comandi ricevuto dai client.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 129

⌂
SENSORI E TRASDUTTORI

Sensore e trasduttore sono due termini concettualmente diversi:

 il primo identifica un dispositivo che converte una determinata grandezza in ingresso in grandezza elettrica

 il secondo trasforma una forma di energia in un’altra

Spesso non viene fatta una netta distinzione tra i due dispositivi e spesso i termini vengono usati come sinonimi.

Il trasduttore, generalmente costituito da uno o più sensori e da due blocchi di interfacciamento, è il primo elemento che

compone il sistema di acquisizione dati e provvede alla conversione di un tipo di energia in ingresso in un altro tipo di energia in

uscita.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 130

L’interfaccia ingresso-sensore realizza una prima conversione del misurando in grandezza adatta al sensore, il quale rilevando le

variazioni della grandezza al suo ingresso produce una variazione del segnale elettrico in uscita.

L’interfaccia sensore-uscita realizza una connessione fisica tra il sensore e l’apparecchio successivo del sistema DAQ (data

acquisition).

Un elenco dei più comuni trasduttori è riportato nella seguente tabella.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 131

SENSORE DI TEMPERATURA TMP36

Il componente elettronico TMP36 è un dispositivo integrato ad

alta precisione utilizzato per misurare la temperatura

ambientale.

Dato il basso costo e l’ampia scala di valori ammissibili (ovvero da -

40°C fino a 125°C) questi dispositivi sono particolarmente diffusi. Non

è necessaria nessuna operazione calibrazione per ottenere valori di

accuratezza pari a ±1°C ad una temperatura di circa +25°C e ±2°C nel

range di temperature −40°C to +125°C.

Nel caso specifico, osservando il grafico che riporta la caratteristica

tensione/temperatura (per il TMP36 la linea è evidenziata in rosso)

per una tensione di uscita di 0.5V il sensore rileva la temperatura di

0°C.

Valori di tensione inferiori a 0.5V indicano una temperatura sotto lo

zero, mentre valori di tensione superiori a 0.5V indicano una temperatura positiva.

Inoltre è importante considerare che “una variazione 1 grado corrisponde ad una variazione di tensione di 10mV”.

Quindi, se sul pin di input analogico sono presenti 550mV significa che il sensore sta rilevando una temperatura di 5°C (550mV –

500mV = 50 mV  variazione di 5°C).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 132

CURVA CARATTERISTICA DEL SENSORE TMP36

La curva caratteristica del sensore è la funzione matematica che permette di calcolare la grandezza fisica (T°C) in funzione della

grandezza elettrica misurata (Volt).

Se la funzione NON è lineare torna utile un “foglio di calcolo” per determinare la curva di tendenza che approssima al meglio la

curva caratteristica del sensore.

Nel caso del TMP36 la curva è una semplice retta: T(°C) = 100 Volt – 50.

Se la tensione fornita dal sensore viene rilevata tramite Arduino su un PIN analogico (10 bit) si dovrà convertire il risultato della

lettura nel seguente modo:

float volt = analogRead(PIN) * 5.0/1024.0; // usare i decimali per le divisioni!

float temperatura = 100 * volt – 50;

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 133

ESERCIZIO CON SENSORE TMP36

Accendere una striscia di 3 led in modo proporzionale alla temperatura rilevata dal sensore.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 134

CODICE

float volt;
float temperatura= 0;

void setup()
{
 pinMode(A0, INPUT);
 Serial.begin(9600);

 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
}

void loop()
{
 volt = analogRead(A0) * 5.0/1024.0; // usare i decimali nella divisione!

 temperatura = 100 * volt – 50;

 Serial.print(temperatura);

 Serial.println(" C");

 if (temperatura < 0) {
 digitalWrite(2, LOW);
 digitalWrite(3, LOW);
 digitalWrite(4, LOW);
 Serial.println("SOTTO ZERO");
 }
 if (temperatura >= 0 && temperatura < 10) {
 digitalWrite(2, HIGH);
 digitalWrite(3, LOW);
 digitalWrite(4, LOW);
 Serial.println("BASSA");
 }
 if (temperatura >= 10 && temperatura < 20) {
 digitalWrite(2, HIGH);
 digitalWrite(3, HIGH);
 digitalWrite(4, LOW);
 Serial.println("MEDIA");
 }
 if (temperatura >= 20) {
 digitalWrite(2, HIGH);
 digitalWrite(3, HIGH);
 digitalWrite(4, HIGH);
 Serial.println("ALTA");
 }
 delay(1000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 135

TERMISTORE NTC (NEGATIVE TEMPERATURE COEFFICENT)

Un termistore è un resistore il cui valore di resistenza varia con la temperatura.

I termistori NTC possono essere caratterizzati con un'equazione detta equazione con parametro B o beta value:

dove le temperature sono in kelvin (K) e R0 è la resistenza alla temperatura T0 (di solito 25 °C=298,15 K).

B è costante solo in prima approssimazione e di solito ne viene indicato l'intervallo di temperature in cui è valida e la sua

tolleranza in % (ad esempio B25/85 ± 2% indica che B tra 25 °C e 85 °C ha un errore massimo di ± 2%.

Il modulo sensore di temperatura per Arduino include un termistore NTC da 10K in serie con un resistore da 10K.

 RT = VRT / (VR/R)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 136

MONITORARE TEMPERATURA TRAMITE TERMISTORE NTC

simulabile su “wokwi.com”

CODICE

//Thermistor parameters: RT0: 10KΩ B: 3977 K +- 0.75% T0: 25 C +- 5%
//From datasheet
#define RT0 10000 // Ω
#define B 3977 // K
//--------------------------------------

#define VCC 5 //Supply voltage
#define R 10000 //R=10KΩ

//Variables
float RT, VR, ln, TX, T0, VRT;

void setup() {
 Serial.begin(9600);
 T0 = 25 + 273.15;
}

void loop() {
 VRT = analogRead(A0); // 0-1023  tensione sul termistore
 VRT = (5.00 / 1023.00) * VRT; // converto in V
 VR = VCC - VRT; // tensione sulla resistenza R da 10K
 RT = VRT / (VR / R); // Resistenza di RT (V/I)
 ln = log(RT / RT0);
 TX =1/ (ln / B + 1 / T0); //Temperature from thermistor in K
 TX = TX - 273.15; //Conversion to °C

 Serial.print("Temperatura: ");
 Serial.print(TX);
 Serial.println(" ℃");
 delay(1000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 137

MONITORARE TEMPERATURA CON TERMISTORE NTC E LCD 16X2 I2C

simulabile su “wokwi.com”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 138

//Thermistor parameters: RT0: 10KΩ B: 3977 K +- 0.75% T0: 25 C +- 5%
//From datasheet
#define RT0 10000 // Ω
#define B 3977 // K
#define VCC 5 //Supply voltage
#define R 10000.0 //R=10KΩ
//--------------------------------------

// Voltmetro
float Rref= 660.0;

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 20, 4);
// Arduino: LiquidCrystal_I2C lcd(0x3f, 16, 2);

int pinSensor = A0;

//Variables
float RT, VR, ln, TX, T0, VRT;

String riga1 = "Display LCD con";
String riga2 = "interfaccia I2C";

void setup(){
 lcd.init();
 lcd.backlight();
 pinMode(pinSensor, INPUT);

 lcd.clear();
 lcd.setCursor(0, 0);
 typewriting(riga1);
 lcd.setCursor(0, 1);
 typewriting(riga2);

 delay(1500);

 lcd.clear();
}

void loop(){
 T0 = 25 + 273.15;

 VRT = analogRead(A0); // 0-1023  tensione sul termistore
 VRT = (5.00 / 1023.00) * VRT; // converto in V
 VR = VCC - VRT; // tensione sulla resistenza R da 10K
 RT = VRT / (VR / R); // Resistenza di RT (V/I)
 ln = log(RT / RT0);
 TX =1/ (ln / B + 1 / T0); //Temperature from thermistor in K
 TX = TX - 273.15; //Conversion to °C

 lcd.setCursor(0, 0);
 lcd.print("T "); lcd.print(TX); lcd.print(" Rs"); lcd.print(RT);

 delay(1000);
}

void clearRow(byte rowToClear)
{
 lcd.setCursor(0, rowToClear);
 lcd.print(" ");
}

void typewriting(String messaggio){
 int lunghezza = messaggio.length();
 for(int i = 0; i < lunghezza; i++){
 lcd.print(messaggio[i]);
 delay(25);
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 139

SISTEMA CONTROLLO TEMPERATURA ON-OFF

int pinVentola=11;
const float B = 3950;
const float R = 10000.0;
const float RT0 = 10000.0;
const float T0 = 298.15;
const float Vcc = 5.0;

//Variables
float Rs, VR, I, Ts, Vs;

void setup()
{
 pinMode(pinVentola, INPUT);
 Serial.begin (9600);
}

void loop()
{

Vs = analogRead(A0); // 0-1023 tensione sul termistore
Vs = (5.00 / 1023.00) * Vs; // converto in Volt
VR = Vcc - Vs; // tensione sulla resistenza R da 10K
I = VR/R;
Rs = Vs/I; // Resistenza di Rs (V/I)
Ts =1/ (log(Rs/ RT0) / B + 1 / T0); //Ts in K
Ts = Ts - 273.15; //Conversion to °C
Serial.print("T= ");
Serial.print(Ts);
Serial.println(" C");

if (Ts>=50) {
 Serial.println("Accendo");
 digitalWrite(pinVentola,HIGH);
}
else {
 Serial.println("Spengo");
 digitalWrite(pinVentola,LOW);
}
delay(5000);

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 140

TERMORESISTENZE

Molte industrie utilizzano le termoresistenze per misurare la temperatura e, la maggior parte di questi dispositivi, utilizza un

sensore Pt100 o Pt1000. Questi due sensori di temperatura hanno caratteristiche simili, ma la loro differenza nella resistenza

nominale determina quale sia la scelta ideale in bassa alla propria applicazione.

I rilevatori a resistenza di temperatura (RTD – Resistance temperature detectors), detti anche termoresistenze, sono noti

dispositivi di misura della temperatura grazie alla loro affidabilità, accuratezza, versatilità, ripetibilità e facilità di installazione.

Il principio di base di una termoresistenza è che il suo sensore a filo, realizzato in un metallo con una resistenza elettrica nota,

cambia il suo valore di resistenza quando la temperatura sale o scende. Sebbene le termoresistenze abbiano alcune limitazioni,

tra cui una temperatura massima di misura di circa 600 ° C, nel complesso rappresentano la soluzione di misura della

temperatura ideale per una moltitudine di processi.

PERCHÉ UTILIZZARE UN SENSORE AL PLATINO

I fili dell’elemento di misura di una termoresistenza possono essere realizzato in nichel, rame o tungsteno, ma il platino (Pt) è

oggi di gran lunga il metallo più popolare utilizzato. È più costoso di altri materiali, ma il platino ha diverse caratteristiche che lo

rendono particolarmente adatto per le misure di temperatura, tra cui:

 Relazione quasi lineare tra resistenza e temperatura

 Alta resistività (59 Ω / cmf rispetto a 36 Ω / cmf per il nichel)

 Resistenza elettrica non degradabile nel tempo

 Eccellente stabilità

 Ottima passività chimica

 Elevata resistenza alla contaminazione

DIFFERENZA TRA PT100 E PT1000

Tra le termoresitenze in platino, le Pt100 e Pt1000 sono le più comuni. Le Pt100 hanno una resistenza nominale di 100 Ω al

punto di fusione del ghiaccio (0 ° C). La resistenza nominale delle Pt1000 a 0 ° C è invece di 1.000 Ω. La linearità della curva

caratteristica, il campo di temperatura operativo e il tempo di risposta sono gli stessi per entrambi. Anche il coefficiente di

temperatura della resistenza è lo stesso.

Tuttavia, a causa della diversa resistenza nominale, le letture delle sonde Pt1000 sono maggiori di un fattore 10 rispetto alle

Pt100. Questa differenza diventa evidente quando si confrontano configurazioni a 2 fili, in cui si verifica l’errore di misura. Ad

esempio, l’errore di misura in una Pt100 potrebbe essere di + 1,0 ° C, e quello di una Pt1000 con la stessa esecuzione potrebbe

essere di + 0,1 ° C.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 141

COME SCEGLIERE IL GIUSTO SENSORE AL PLATINO

Entrambi i tipi di sensori funzionano bene nelle configurazioni a 3 e 4 fili, dove i cavi e i connettori aggiuntivi compensano gli

effetti della resistenza dei fili conduttori sulla misura della temperatura. Le due tipologie di configurazione hanno un prezzo

simile. Le sonde Pt100, tuttavia, sono più popolari delle Pt1000 per un paio di motivi:

Una sonda Pt100 è disponibile sia in esecuzione a filo avvolto che a film sottile, offrendo agli utenti la possibilità di scelta e

flessibilità. Le sonde Pt1000 sono quasi sempre solo a film sottile

Poiché il loro uso è così diffuso in tutti i settori, le sonde Pt100 sono compatibili con una vasta gamma di strumenti e processi.

Quindi, perché si dovrebbe optare per la sonda Pt1000? Le situazioni in cui la maggiore resistenza nominale ha un vantaggio

evidente sono le seguenti:

Una sonda Pt1000 è migliore nella configurazione a 2 fili e quando viene utilizzata con lunghezze di cavo più lunghe. Minore è il

numero di fili e più lunghi essi sono, maggiore è la resistenza che si aggiunge alle letture, causando in tal modo imprecisioni. La

maggiore resistenza nominale della sonda Pt1000 compensa questi errori aggiunti

Una sonda Pt1000 è migliore per le applicazioni alimentate a batteria. Un sensore con una resistenza nominale più elevata

utilizza meno corrente elettrica e, pertanto, richiede meno energia per funzionare. Il consumo energetico ridotto prolunga la

durata della batteria e l’intervallo tra la manutenzione, riducendo i tempi di fermo impianto e i costi

Poiché una Pt1000 consuma meno energia, l’autoriscaldamento è inferiore. Ciò significa meno errori di lettura a causa di

temperature superiori a quelle ambientali

In generale, i le sonde temperatura Pt100 sono più comunemente utilizzate nelle applicazioni di processo, mentre le Pt1000

sono utilizzate nei settori della refrigerazione, riscaldamento, ventilazione, automotive e dei costruttori di macchine.

SOSTITUZIONE DELLE TERMORESISTENZE: NOTA SULLE NORME INDUSTRIALI

Le termoresistenze sono facili da sostituire, ma non si tratta semplicemente di sostituirle l’una con l’altra. Il problema a cui gli

utenti devono prestare attenzione quando sostituiscono le sonde Pt100 e Pt1000 esistenti è la norma nazionale o

internazionale.

La norma U.S.A. più vecchia, ad esempio, indica il coefficiente di temperatura del platino come 0,00392 Ω / Ω / ° C (ohm per ohm

per grado centigrado). Nella nuova norma europea DIN / IEC 60751, che viene utilizzata anche in Nord America, è 0,00385 Ω / Ω

/ ° C. La differenza è trascurabile a temperature più basse, ma diventa evidente al punto di ebollizione dell’acqua (100 ° C),

quando la norma più vecchia leggerà 139,2 Ω mentre quella più recente leggerà 138,5 Ω.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 142

CONVERTIRE LA RESISTENZA PT100/PT1000 IN TEMPERATURA

La variazione di una resistenza elettrica dipende dalla differenza di temperatura e dai coefficienti termici del materiale utilizzato.

La resistenza nominale a 0 °C è pari a 100 Ω per Pt100 e 1 kΩ per Pt1000.

I coefficienti termici del platino sono pari a

A = 3,91 · 10−3 [K-1]

 B = -0,588 · 10−6 [K-2]

La formula generale per calcolare una resistenza in funzione della temperatura è la seguente:

R(ϑ): Resistenza in funzione della temperatura *Ω+

R0: Resistenza nominale elettrica a 0 °C *Ω+

ϑ: Temperatura [°C]

ϑ0: Temperatura di riferimento [°C]

A: Coefficiente termico lineare [K-1]

B: Coefficiente termico quadrato [K-2]

Il range di temperatura da 0 °C a 100 °C può essere descritto con un'equazione approssimata lineare.

A tale scopo si sceglie la temperatura di riferimento ϑ0 = 0 °C.

I coefficienti A e B vengono sostituiti dal coefficiente medio α = 3,91 · 10−3 K-1.

R(ϑ): Resistenza in funzione della temperatura *Ω+

R0: Resistenza nominale elettrica a 0 °C *Ω+

Θ: Temperatura [°C]

α: Coefficiente termico medio [K-1]

Modificando la formula è possibile convertire in temperatura la resistenza misurata:

ϑ(R): Temperatura in funzione della resistenza [°C]

α: Coefficiente termico medio [K-1]

R: Resistenza misurata della sonda Pt *Ω+

R0: Resistenza nominale elettrica a 0 °C *Ω+

ΔR: Variazione misurata della resistenza *Ω+

Quindi nota la variazione di resistenza si può rilalire risalire alla temperature:



R = 2*R*(Vab/E)/(0.5-Vab/E);  Rpt1000= R+ R  T = (Rpt1000/1000-1)/0.00385

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 143

CURVA CARATTERISTICA DELLE TERMORESISTENZE

La curva caratteristica rappresenta il rapporto lineare tra la resistenza elettrica e la temperatura.

 I valori concreti di Pt100 e Pt1000 possono essere dedotti graficamente dalle curve caratteristiche Pt100 / Pt1000 o letti

direttamente dalle tabelle Pt100 / Pt1000.

Il platino si presta particolarmente bene come materiale, grazie alla sua elevata stabilità a lungo termine e alle caratteristiche

elettriche piuttosto costanti alle alte temperature.

Per questo la curva caratteristica delle resistenze al platino è estremamente lineare anche a fronte di temperature elevate.

Aggiungendo al platino altre sostanze si ottengono risultati ancora migliori.

 CURVA CARATTERISTICA PT100

CURVA CARATTERISTICA PT1000

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 144

TERMORESISTENZA PT100 CON PARTITORE DI TENSIONE

La termoresistenza viene simulata tramite un potenziometro (130 ohm fondo scala) .

La temperatura viene rilevata tramite un partitore di tensione con una resistenza di 100 ohm.

Attenzione a fare I calcoli con numeri reali (double) per non perdere decimali nelle operazioni.

Codice

#include <Adafruit_LiquidCrystal.h>

int sensorValue = 0;
double sensoreVolt, corrente, resistenzaPT100, temperaturaPT100;

Adafruit_LiquidCrystal lcd_1(0);

void setup()
{
 pinMode(A0, INPUT);
 lcd_1.begin(16, 2);
 lcd_1.setCursor(0, 0);
 lcd_1.print("PT100");
 Serial.begin(9600);
}

void loop()
{
 // read the analog in value:
 sensorValue = analogRead(A0);
 sensoreVolt = roundTo(sensorValue * 5.0/1023,100.0);
 corrente= (5.00-sensoreVolt)/100.0;
 resistenzaPT100= sensoreVolt / corrente;
 temperaturaPT100 = ((resistenzaPT100/ 100.00)-1.0) / 0.00391;

 lcd_1.setCursor(0, 1);
 lcd_1.print(String(temperaturaPT100,1));
 char gr = char(176);
 lcd_1.print(gr);
 lcd_1.print("C / ");
 lcd_1.print(String(resistenzaPT100,1));

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 145

 Serial.print(sensorValue); Serial.print('/');
 Serial.print(sensoreVolt,5); Serial.print('/');
 Serial.print(corrente,5); Serial.print('/');
 Serial.print(resistenzaPT100); Serial.print('/');
 Serial.print(temperaturaPT100); Serial.println(char(176));

 delay(100);
}

// arrotonda decimali --> 10.0=1 dec, 100.0=2 dec, 1000.0=3 dec ...
double roundTo(double num, float dec)
{
 return (int)(num*dec + 0.5) / dec;
 //long numero= int(num *dec);
 //long decimali= dec* (num - numero)+ 0.5/dec;
 //return numero + decimali/ dec;
}

TERMORESISTENZA PT1000 CON AMPLIFICATORI DIFFERENZIALE

Per gestire piccolo variazioni di temperature (e quindi tensioni dell’ordine di pochi mV) tramite un termistore è necessario

utilizzare un circuito AMPLIFICATORE che amplifichi la differenza di tensione in uscita a un ponte di Wheatstone in cui è inserita

la termoresistenza.

Si utilizza l’amplificatore operazionale in configurazione DIFFERENZIALE.

Le R devono essere molto alte, rispetto a quelle del ponte, per non disturbare la variazione di tensione letta dal ponte

 (es. 100K e 1000K  93.2mV al posto di 93.8mV).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 146

CODICE

// PT1000 range 0 - 100 °C
// ponte Wheatstone
// AO amplificatore operazionale LM741

int amplificatoreV;
float deltaR;
int R=1000;
int E=5;
int guadagnoAmplificatore=10;
float Vab,Vo,Rpt1000, T;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 amplificatoreV = analogRead(A0); // 10 bits
 Vo = amplificatoreV/1024.00*5.0; // tensione in mV
 Vab = Vo/guadagnoAmplificatore;
 Serial.println(Vab);

deltaR= 2*R*(Vab/E)/(0.5-Vab/E);
 Serial.println(deltaR);

 Rpt1000 = R+ deltaR;
 Serial.println(Rpt1000);

 // pt1000: Rpt1000=1000*(1+0.00385*T)
T = (Rpt1000/1000-1)/0.00385;
 Serial.print("T: ");
 Serial.print(T);
 Serial.print(char(176));
 Serial.println("C");

 delay(1000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 147

TERMOCOPPIE

Una termocoppia è un tipo di sensore di temperatura che sfrutta l'effetto termoelettrico per misurare temperature comprese
tra -170 °C e +1200 °C. Una termocoppia è composta da due fili metallici diversi.

I fili metallici sono collegati tra loro in un unico punto, solitamente la punta della termocoppia, nota come giunzione
calda , giunzione di misura , punto di rilevamento o giunzione di rilevamento . Come suggerisce il nome, questa giunzione è
esposta alla fonte di calore di interesse.

L'estremità opposta dei fili metallici è nota come giunzione fredda ed è collegata al dispositivo di misura.
In genere, la giunzione fredda non è esposta allo stesso livello di energia termica della giunzione calda.

Effetto termoelettrico

Tutte le termocoppie funzionano allo stesso modo: generano una piccola tensione quando sono esposte al calore.

Quando si riscalda un pezzo di metallo, il calore eccita gli elettroni presenti nel metallo, facendoli oscillare. Man mano che il
metallo si riscalda, più elettroni tendono a "diffondersi" e a spostarsi verso l'estremità più fredda del metallo.

Ciò fa sì che l'estremità più calda abbia una carica leggermente positiva e quella più fredda una carica leggermente negativa,
creando una differenza di tensione. Questo è noto come effetto termoelettrico o effetto Seebeck , dal nome dello scienziato
tedesco Thomas Seebeck, che scoprì questo fenomeno nel 1821.

Thomas Seebeck dimostrò che il potenziale elettrico V, che nasce in un giunto è funzione della temperatura del giunto e tale
potenziale dipende dalle caratteristiche fisiche della giunzione, secondo la relazione:

VJ =  * TJ

dove  è il coefficiente di Seebeck, che dipende dalla temperatura e dalle caratteristiche fisiche della giunzione.

Funzionamento della termocoppia

Una termocoppia funziona basandosi sul movimento degli elettroni nei suoi fili metallici, causato dalla differenza di calore tra le
giunzioni calda e fredda.

Se i due fili della termocoppia fossero costituiti dallo stesso tipo di metallo, ad esempio rame, gli elettroni in entrambi i fili si
allontanerebbero dal calore e si accumulerebbero nelle estremità fredde in quantità uguali, senza che si verifichi alcuna
differenza di tensione misurabile.

Ma se ricordate, le termocoppie sono costituite da due diversi tipi di filo metallico. Quindi, se due fili della termocoppia fossero
costituiti da materiali diversi, ad esempio uno di rame e uno di ferro, i metalli condurrebbero il calore in modo diverso,
determinando un gradiente di temperatura distinto. Ciò causa un accumulo variabile di elettroni alle estremità fredde, con
conseguente differenza di tensione misurabile.

Thomas Johann Seebeck

è stato un fisico estone,

scopritore dell'effetto

termoelettrico

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 148

Questa differenza di tensione è molto piccola. La variazione effettiva di tensione per grado Celsius è minuscola. Ad esempio, per
una termocoppia di tipo K, la variazione è di circa 41 µV/°C.

Cavi per termocoppie

Quando esposti al calore, gli elettroni in ciascun filo della termocoppia reagiscono in modo diverso e si muovono a velocità
diverse.

Il filo in cui si accumulano più elettroni nella giunzione fredda è chiamato filo conduttore negativo, mentre il filo in cui si
accumulano meno elettroni nella giunzione fredda è chiamato filo conduttore positivo.

Questa differenza di carica tra i conduttori positivo e negativo può essere misurata e utilizzata per determinare la temperatura
nella giunzione calda.

Curve caratteristiche termocoppia

Esistono diversi tipi di termocoppie, come Tipo J, Tipo K, Tipo E, Tipo T, ecc., in base alla combinazione di metalli o leghe
utilizzate per i due fili. Ogni tipo di termocoppia ha le proprie caratteristiche funzionali, di intervallo di temperatura, di
precisione e di applicazione.

Esistono diversi tipi di termocoppie, che si differenziano per i metalli dei fili conduttori. Infatti, la combinazione di vari metalli

determina le caratteristiche e le applicazioni più adatte: così si possono distinguere termocoppie a metallo base e termocoppie a

metallo nobile.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 149

Le termocoppie a metallo base, di cui i tipi K, J, T, E ed N, sono composte da metalli comuni come nichel, ferro e rame, e sono le

più diffuse per la loro economicità e versatilità in molteplici applicazioni a bassa e media temperatura. Per la precisione:

 la termocoppia tipo K è composta da nichel-cromo e nichel-alluminio (-200 a +1200°C);

 la termocoppia tipo J è composta da ferro e costantana (lega rame-nichel), con un tipico range di temperatura da -210 a

+1200°C;

 la termocoppia tipo T è composta da rame e costantana (da -270 a +400°C);

 la termocoppia tipo E è composta da nichel-cromo e costantana (da -270 a +980°C);

 la termocoppia tipo N è composta da nicrosil (nichel-cromo-silicio) e nisil (nichel-silicio), con un tipico range di

temperatura da -270 a +1300°C.

Le termocoppie a metallo nobile sono realizzate con metalli pregiati, adatti a misurare temperature elevate (sopra i 1000°C).

Offrono maggiore stabilità ma a costi notevolmente più alti, motivo per cui sono meno diffuse rispetto alle termocoppie a

metallo base.

Tuttavia, la termocoppia più utilizzata nelle applicazioni industriali è quella di tipo K, perché risponde in modo prevedibile in un
ampio intervallo di temperatura (da -175 °C a +1100 °C circa) e ha una sensibilità di circa 41 μV/°C.
È costituita da un filo positivo in Chromel (lega di nichel-cromo) e da un filo negativo in Alumel (lega di nichel-alluminio).

Le principali caratteristica negative delle termocoppie sono:

 la bassa sensibilità per cui la tensione di uscita deve essere amplificata.

 non linearità su un ampio campo di misura

DIGITALIZZATORE DI TERMOCOPPIA

Per rendere utile la termocoppia, è necessario calibrarla testandola a temperature note e registrando le tensioni generate.
È quindi possibile utilizzare una formula per calcolare la temperatura in base alla tensione misurata.

È qui che entrano in gioco i circuiti integrati digitalizzatori per termocoppie come il MAX6675. Questi circuiti integrati (IC) sono
progettati per eseguire la compensazione della giunzione fredda e digitalizzare il segnale ricevuto da una termocoppia.
Ogni termocoppia ha un suo specifico digitalizzatore (essendo le curve diverse).

Modulo MAX6675 per termocoppia K

Il cuore della scheda è un circuito integrato digitalizzatore per termocoppia di tipo K con compensazione della giunzione fredda
di Microchip, il MAX6675.

Il breakout accetta una termocoppia standard di tipo K a un'estremità, digitalizza la temperatura misurata e invia i dati all'altra
estremità tramite un'interfaccia SPI (seriale), interpretandoli e traducendoli per consentirne una semplice lettura.

Il circuito integrato MAX6675 include un convertitore analogico-digitale (ADC) a 12 bit, il che significa che il circuito integrato
può rilevare le temperature fino a 0,25 °C (risoluzione a 12 bit  4096).

Il MAX6675 può misurare temperature comprese tra 0 °C e +1024 °C con una precisione di ±3 °C.
Tuttavia, è importante tenere presente che l'intervallo dipende dal tipo di sonda utilizzata.

Oltre al basso costo, alle dimensioni ridotte e all'ampio intervallo, il MAX6675 funziona da 3V a 5,5 V e assorbe circa 700 µA.
La corrente massima che può assorbire è di circa 1,5 mA.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 150

TERMOCOPPIA TIPO K

La termocoppia di tipo K è la più diffusa nel settore industriale.

È costituita da una combinazione di fili a base di nichel (solitamente cromel/alumel).

Economica ma al tempo stesso affidabile garantendo una misurazione accurata.

Gli intervalli di misurazione sono generalmente compresi tra -200 e +1260 gradi centigradi con una deviazione standard di

+0,75%. Il nichel impiegato (resistente alla corrosione e ossidazione) permette l'impiego in una vasta gamma di applicazioni.

Nello specifico, il filo della termocoppia di tipo K include un polo positivo composto per circa il 90% di nichel e per il 10% da

cromo, ed un altro negativo composto per il 95% da nichel, 2% da alluminio, 2% da manganese e un restante 1% da silicio.

Dall’analisi della dipendenza del coefficiente di Seebeck in funzione della temperatura si vede che nel range da 0 a
1000°C la termocoppia K ha un comportamento pressoché l ineare in quanto il coeffciente alfa è approssimativamente
costante pari a 0.041.

Di conseguenza queste termocoppie sono molto usate perché non necessitano del circuito di linearizzazione.

L'approssimazione lineare

Sebbene la risposta di una termocoppia non sia perfettamente lineare per calcoli rapidi si utilizza la seguente equazione:

Dove:

 V= Tensione in uscita (millivolt, mV).

  = coefficiente di Seebeck medio per il Tipo K (0,041 mV/°C).

 T: Temperatura del giunto caldo (°C).

 Trif: Temperatura del giunto di riferimento (solitamente 0°C).

Quindi, assumendo il riferimento a 0°C, l'equazione semplificata è:

V = 0.041 T (volt)

NOTA: A 500°C l’errore è di circa 3.5°C mentre a 1000°C è di circa 6.7°C.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 151

SONDA TERMOCOPPIA TIPO K COMMERCIALE

La sonda termocoppia in dotazione con il modulo è lunga circa 18 pollici e ha un intervallo di misurazione da 0 °C a 80 °C.

Il terminale rosso della sonda è il polo positivo realizzato in Chromel (lega di nichel-cromo), mentre il terminale blu è il polo
negativo realizzato in Alumel (lega di nichel-alluminio).

La sonda è dotata di isolamento in fibra di vetro, un materiale noto per la sua capacità di resistere ad alte temperature e
condizioni difficili. Questo la rende una scelta adatta per un'ampia gamma di progetti.

La sonda termina con un attacco filettato M6. Questo tipo di attacco consente di fissare la termocoppia a un oggetto, ad
esempio un dissipatore di calore, dove può essere avvitata o fissata con un dado.

Tensione di esercizio da 3,0 a 5,5 V

Interfaccia SPI ad alta velocità

Consumo attuale 700µA (tipico), 1,5mA (max)

Intervallo di temperatura 0 – 1024 °C (di MAX6675)0 – 80 °C (della sonda in dotazione)

Precisione ±3 °C

Risoluzione 12 bit (0,25 °C)

Tempo di conversione ~170 ms

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 152

COLLEGAMENTO DEL MODULO MAX6675 A UN ARDUINO

Colleghiamo il modulo MAX6675 all'Arduino. I collegamenti sono semplici.

Per prima cosa, collega il pin VCC del modulo ai 5 V dell'Arduino e il pin GND a terra. Ora colleghiamo i tre pin digitali da

utilizzare come interfaccia SPI. Nell'esempio utilizziamo i pin 4, 5 e 6. Infine, colleghiamo la termocoppia al modulo.

Il terminale rosso (cavo Chromel) della termocoppia al terminale '+' del modulo e il terminale blu (cavo Alumel) al terminale '-'.

Poiché il modulo consuma pochissima energia (meno di 1,5 mA), è possibile alimentarlo tramite un pin di uscita digitale del

microcontrollore. Se si decide di utilizzare questo metodo e di spegnere il MAX6675 tra una lettura e l'altra, è consigliabile

attendere alcuni secondi dopo la riaccensione prima di tentare una lettura.

Codice

#include "max6675.h"

// Define the Arduino pins, the MAX6675 module is connected to
int SO_PIN = 4; // Serail Out (SO) pin
int CS_PIN = 5; // Chip Select (CS) pin
int SCK_PIN = 6; // Clock (SCK) pin

// Create an instance of the MAX6675 class with the specified pins
MAX6675 thermocouple(SCK_PIN, CS_PIN, SO_PIN);

void setup() {
 Serial.begin(9600);
 delay(500);
}

void loop() {
 // Read the temperature in Celsius
 Serial.print("Temperature: ");
 Serial.print(thermocouple.readCelsius());
 Serial.print("\xC2\xB0"); // shows degree symbol °
 Serial.print("C");

 delay(1000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 153

SENSORE DI UMIDITA’ DHT22

Il DHT22 è un trasduttore di temperatura (da -40°C a +80°C) e umidità relativa (da 0% a 100%).

Dispone di interfaccia seriale a filo singolo che ne facilita l'utilizzo. Il sensore DHT22 viene calibrato in modo estremamente

preciso, i coefficienti di calibrazione sono memorizzati nella memoria OTP e vengono richiamati durante il processo di

rilevamento, in questo modo non vi è alcuna necessità di ricalibrare il sensore. È particolarmente adatto per prodotti di

consumo, stazioni meteo, applicazioni HVAC (Heating, Ventilation and Air Conditioning), ecc.

DATI TECNICI

-Alimentazione: da 3 a 5 VDC
-Consumo: max. 2,5 mA
-Range Umidità: da 0 a 100% con precisione del 2-5%
-Range di Temperatura: da -40°C a +80°C +-0,5°C di precis.
-Velocità di campionamento: <= 0,5 Hz (1 volta ogni 2 sec.)
-Uscita dati: seriale a filo singolo (non è Dallas One Wire)

CODICE

#include "DHT.h"

#define DHTPIN 2
#define DHTTYPE DHT22

DHT dht(DHTPIN, DHTTYPE);

void setup() {
 Serial.begin(9600);
 dht.begin();
}

void loop() {
 float temperature = dht.readTemperature();
 float humidity = dht.readHumidity();

 // Check if any reads failed and exit early (to try again).
 if (isnan(temperature) || isnan(humidity)) {
 Serial.println(F("Failed to read from DHT sensor!"));
 return;
 }

 Serial.print(F("Humidity: "));
 Serial.print(humidity);
 Serial.print(F("% Temperature: "));
 Serial.print(temperature);
 Serial.println(F("°C "));

 // Wait a few seconds between measurements.
 delay(2000);
}

simulabile su “wokwi.com”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 154

ESTENSIMETRI INDUSTRIALI

L'estensimetro è uno strumento di misura utilizzato per rilevare piccole deformazioni dimensionali di un corpo sottoposto a
sollecitazioni meccaniche o termiche (es. applicazione di carichi o variazioni di temperatura).

Conoscendo a priori le caratteristiche meccanico/fisiche del materiale, misurando le deformazioni si possono facilmente ricavare
i carichi a cui il materiale è sottoposto.
Inoltre, utilizzando estensimetri di giusta tipologia e applicandoli in modo oculato, si possono rilevare la direzione e il verso di
queste deformazioni, e di conseguenza il vettore delle forze applicato al materiale sotto esame.

I campi d'applicazione sono molteplici:

 prove in laboratorio su componenti meccanici o materiali;

 analisi statiche e dinamiche di componenti o sistemi meccanici già montati in situ;

 monitoraggio di componenti o sistemi strutturali;

 elemento sensore per trasduttori di grandezze meccaniche;

misure del carico assiale su braccetti di sterzo con estensimetri elettrici a resistenza

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 155

Gli elementi principali di un estensimetro sono la matrice e la griglia.

I materiali più comuni con cui si realizzano le griglie sono:

Le griglie sono disponibili in lunghezze che variano da 0,2 mm a 120 mm.

Le matrici (dette anche supporto) vengono realizzate con delle resine anche rinforzate con fibra di vetro per migliorarne le

prestazioni alle alte temperature.

La piastrina metallica è il supporto tipico degli estensimetri saldabili applicati alle superfici con una saldatura per punti.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 156

RESISTENZA DEGLI ESTENSIMETRI

Gli estensimetri sono disponibili con resistenze da 120, 350 e 1000 Ohm.

Per le classiche misure di stress analysis si possono usare sia i 120 che i 350 Ohm (questi ultimi soprattutto su materiali cattivi

conduttori di calore).

Per realizzare i trasduttori estensimetrici si usano sia i 350 che i 1000 Ohm.

La variazione di resistenza elettrica di un estensimetro deformato è dell’ordine delle frazioni di Ω .

Queste variazioni di resistenza vanno misurate su circuiti che hanno resistenze assolute di centinaia di Ω .

Ciò richiede l’utilizzo di un particolare circuito di misura, detto circuito a ponte o ponte di Wheatstone.

IL PONTE DI WHEATSTONE

E’ costituito da 4 resistenze elettriche che occupano 4 lati di un rombo.

Il ponte viene alimentato da una tensione V ai capi della «diagonale di alimentazione».

Ai capi dell’altra diagonale, detta «diagonale di misura», si misura la tensione di sbilanciamento Eponte.

COLLEGAMENTO A QUARTO DI PONTE

Si utilizza UN solo estensimetro che occupa uno dei lati del ponte.

Scegliendo le alter 3 resistenze R2,R3 e R4 (di precisione) di valore uguale a quella dell’estensimetro a riposo l’equazione del

ponte si semplifica nella seguente formula (valida per variazioni piccole rispetto alle R):

𝐸𝑝𝑜𝑛𝑡𝑒 =
𝑉𝑐𝑐

4
∗

∆𝑅

𝑅

con R=R1=R2=R3=R4 e R= R1-Rgnominale e Rg = resistenza iniziale dell’estensimetro *Ω+

𝐸𝑝𝑜𝑛𝑡𝑒 =
𝑉𝑐𝑐

4
∗
∆𝑅

𝑅

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 157

LEGAME DEFORMAZIONE ELASTICA E VARIAZIONE DI RESISTENZA ELETTRICA

Il legame tra deformazione e variazione di resistenza elettrica si esprime con la seguente relazione:

ε = deformazione *µm+

k = gage factor

Rg = Resistenza iniziale dell’estensimetro *Ω+

ΔR = Variazione di Resistenza dell’estensimetro *Ω+ = Rf – Rg

Rf = Resistenza finale dell’estensimetro *Ω+

Il gage factor K (anche detto fattore di taratura o sensibilità alla deformazione) è una quantità adimensionale che viene ottenuta

sperimentalmente. I valori tipici del gage factor in funzione del tipo di griglia sono rappresentati nella Tabella:

MISURA DELLA DEFORMAZIONE E DELLA FORZA ASSIALE

Su un provino di lunghezza L0 applichiamo una forza di trazione F.

Per effetto della forza il provino si allunga. ΔL rappresenta la variazione di lunghezza.

Se sulla superficie del provno è incollato l’estensimentro come disposto in figura allora anch’esso subirà la stessa deformazione.

Il rapporto tra la variazione di lunghezza ΔL e la lunghezza iniziale L è nota come deformazione meccanica e viene indicata con la

lettera greca ε.

Essendo il rapporto tra due lunghezze la deformazione ε è una quantità adimensionale.

 Essendo la ε una quantità piccola si preferisce usare un sottomultiplo del metro e cioè il µm = 10
-6

 m.

Per cui la deformazione viene espressa in µm/m. È ormai diventato di uso comune esprimere questa quantità in µε.

Spesso la deformazione si trova anche espressa in %.

Così è del tutto equivalente scrivere:

Se l’estensimetro è collegato a quarto di ponte si ha:

F F

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 158

𝐸 𝑝𝑜𝑛𝑡𝑒 =
𝑉𝑐𝑐

4
∗

∆𝑅

𝑅
 da cui si ricava la ∆𝑅 =

4∗𝐸∗𝑅

𝑉

Nota la R si ricava la dalla relazione ɛ =
1

𝑘
∙
∆𝑅

𝑅𝑔
 ed quindi la deformazione L=  * L

Secondo la legge di Hooke, carico specifico e allungamento unitario per piccoli valori del carico sono proporzionali ed il loro

rapporto è definito come il modulo di Young o modulo di elasticità E lineare:

ESERCIZIO

PROVINO in ACCIAO sottoposto a trazione

E 206000 N/mm2

Sez. 20x5mm 100 mm2

L 100 mm

ESTENSIMETRO in Platino collegato a quarto di ponte

Vcc 5 V

Rg 120 ohm

k 4,000

E ponte 0,5 mV

Variazione di resistenza elettrica

R 0,048 ohm

Deformazione relativa

 0,0001 m 100

m/m

=

Allungamento

L 0,00001 m 0,01 mm

Forza di trazione

F 2060 N

AMPLIFICATORE CON CAMPO VARIAZIONE FORZA

F 2000 N 1000 N

L 0,00971 mm 0,004854 mm

 0,000097 0,0000485

R 0,0466019 ohm 0,02330097 ohm

E ponte 0,0004854 V 0,000243 V

 0,485 mV 0,243 mV

Guadagno amplificatore per arrivare a 5V

A 10300

Vamplif. Max. 5000 mV

Vamplif. Min 2500 mV

ESERCIZIO

Valutare l’entità della forza nel caso in cui sia applicata perpendicolarmente all’estremita libera del pezzo (mensola).

𝐹 = 𝐸 ∗ 𝑆 ∗
∆𝐿

𝐿

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 159

ESTENSIMETRO CON AMPLIFICATORE DIFFERENZIALE

Si deve monitorare con Arduino il carico assiale applicato ad una trave sapendo che la sollecitazione può arrivare fino ad un

massimo di 7725N. Si utilizza un semplice amplificatore differenziale (guadagno 200) per leggere la tensione del ponte.

PROVINO in ACCIAO sottoposto a trazione

E 206000 N/mm2

Sez. 20x5mm 100 mm2

L 100 mm

ESTENSIMETRO in platino collegato a quarto di ponte

Vcc 12 V

Rg 1000 ohm

k 4

Simulare il circuito su Thinkercad con l’estensimetro sollecitato a trazione F=7725N.

Notare che la tensione al ponte senza la presenza dell’amplificatore sarebbe di 4.5 mV come previsto dai calcoli.
La presenza dell’operazioneale e relative resistenza va a “disturbare” la tensione.
Questo effetto può essere attenuato aumentando i valori delle R dell’amplificatore fino ad un certo limite …

COMPITO

-Disegnare lo schema elettrico per effettuare la misura tramite Arduino e un amplificatore differenziale
-Simulare su Thinkercad un sistema di monitoraggio del provino che visualizzi su seriale e schermo LCD 16x2 la forza
applicata e la deformazione della trave.
-Si deve attivare una lampada di emergenza (12V-500mA) tramite un relè, quando la sollecitazione supera i 7kN.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 160

FOGLIO DI CALCOLO PER VALUTARE DEFORMAZIONI ELASTICHE

PROVINO ACCIAO sottoposto a trazione

E 206000 N/mm2

Sez. 20x5mm 100 mm2

L 100 mm

ESTENSIMETRO in Platino collegato a quarto di ponte

Vcc 12 V

Rg 1000 ohm

k 4

E ponte 4,5 mV

Variazione di resistenza elettrica

R 1,500 ohm

Deformazione relativa

 0,000375 m 375

m/m

=

Allungamento

L 0,000038 m 0,0375 mm

Forza di trazione rilevata

F 7725 N

TENSIONE AMPLIFICATA CON FORZA NOTA

F 7000 N

L 0,03398 mm

 0,000340

R 1,3592233 ohm

E ponte 0,0040777 V

 4,078 mV

Tensione amplificata di 200

A 200

Vamplif. Max. 816 mV

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 161

MISURA DELLA FORZA E DELLA DEFORMAZIONE IN UNA PROVA DI TRAZIONE

Per la misura della deformazione a trazione di un provino si può fare riferimento al collegamento riportato nella figura, dove le

resistenze di completamento del ponte (3) e (4) sono state inglobate nel potenziometro di azzeramento D.

Si ipotizzi di effettuare la misura della deformazione di trazione del provino a temperatura standard (25°C), mediante un solo

estensimetro (1), incollato con la griglia disposta longitudinalmente con l’asse del provino.

L’estensimetro (2) non soggetto a deformazione viene collegato al ramo opposto del ponte nelle vicinanze del sesnore (1) in

modo da compensare eventuali variaizoni di resistenza dovute alla variazione delle temperatura ambiene (la T fa varIare la R del

sensore!).

Valutare la tensione in presenza di un allungamento di 1/100 di mm del tratto utile del provino in Al di figura con un

estensimetro in Platino da 350 ohm.

COMPITO

-Disegnare lo schema elettrico per effettuare la misura tramite Arduino e un amplificatore differenziale da strumentazione.
-Calcolare le resistenze dell’amplificatore differenziale in modo da amplifcare la tensione di 200 volte.
-Simulare su Thinkercad un sistema di monitoraggio del provino che visualizzi su seriale e schermo LCD 16x2 la forza
applicata e la deformazione del provino in Al assegnato.
-Si deve attivare una lampada di emergenza (12V-500mA) tramite un transistor TIP120, quando la sollecitazione raggiunge
quella di snervamento del materiale.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 162

CIRCUITO CON AMPLIFICATORE DIFFERENZIALE DA STRUMENTAZIONE

E’ previsto l’utilizzo di due amplificatori in configurazione di “inseguitore” con l’obiettivo di ottenere una resistenza in ingresso

all’amplificatore differenziale molto alta in modo da non influenzare la tensione letta dal ponte.

Tipicamente, un amplificatore separatore viene impiegato nel trasferimento di una
tensione da un primo circuito, ad elevato livello d'impedenza, ad un secondo circuito, a
livello d'impedenza inferiore.
L'amplificatore separatore interposto impedisce che il secondo circuito sovraccarichi il
primo circuito e ne alteri il suo funzionamento.
Se la tensione viene trasferita inalterata, l'amplificatore separatore è un amplificatore
a guadagno unitario detto “inseguitore di tensione”.

Realizzazioni

Con inseguitori

Senza inseguitori

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 163

CELLE DI CARICO

Una cella di carico è un componente elettronico (trasduttore) impiegato per misurare una forza applicata su un oggetto (in

genere un componente meccanico) tramite la misura di un segnale elettrico che varia a causa della deformazione che tale forza

produce sul componente.

L'applicazione più comune è nei sistemi di pesatura elettronici e nella misura di sforzi meccanici di compressione e trazione.

Questo componente è generalmente costituito da un corpo metallico (Acciaio inox martensitico o Alluminio).

Al corpo della cella di carico vengono applicati uno o più estensimetri che rilevano la deformazione meccanica di compressione o

trazione subita dal materiale tramite la variazione di resistenza elettrica causata dalla deformazione stessa.

Per aumentare la sensibilità dello strumento e migliorare così la qualità della misura la scelta più comune è quella di usare

quattro estensimetri collegati tra di loro in una configurazione a ponte di Wheatstone, con i due estensimetri adiacenti posti a

90° l'uno rispetto all'altro; questa configurazione permette di aumentare la tensione in uscita dal ponte di circa 2,6 volte (per

celle di carico in acciaio) rispetto alla tensione che restituirebbe una configurazione a quarto di ponte, inoltre permette di

compensare l'effetto della temperatura che eventualmente comporterebbe errori.

Esistono comunque configurazioni più semplici che prevedono l'impiego di uno o due estensimetri. Il segnale elettrico ottenuto

(differenziale) è normalmente dell'ordine di pochi millivolt e richiede un'ulteriore amplificazione ottenibile con un amplificatore

da strumentazione prima di essere utilizzato.

Il segnale viene poi eventualmente elaborato mediante un algoritmo per calcolare la forza applicata al trasduttore.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 164

I fili provenienti dalla cella di carico hanno solitamente i seguenti colori:
 Rosso: VCC (E+)
 Nero: GND (E-)
 Bianco: Uscita – (LA-)
 Verde: Uscita + (LA+)

SCHEDA ELETTRONICA PER CELLA DI CARICO - HX711

Le celle di carico devone essere accoppiate a degli opportuni amplificatore

Il chip HX711 è composto da un amplificatore a guadagno variabile e da un convertitore analogico-digitale di precisione a 24 bit.

Presenta un’alta velocità di risposta e un’alta immunità ai disturbi.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 165

SCHEMA DI COLLEGAMENTO AD ARDUINO

L'amplificatore HX711 comunica tramite un'interfaccia a due fili.

Puo essere collegato a un qualsiasi pin digitale della scheda Arduino.

Cella di carico HX711 HX711 Arduino

Rosso(Mi+) E+ GND GND

Nero(E-) E- DT pin 2

Bianco(UN-) UN- SCK pin 3

Verde(LA+) A+ VCC 5V

Per poter essere utilizzate correttamente le celle di carico necessitano di una accurata taratura inziale effettuata con una

sollecitazione di intensità nota.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 166

SENSORE DI FORZA (FSR FORCE SENSITIVE RESISTOR)

I resistori di rilevamento della forza (FSR) sono un dispositivo a film spesso polimerico (PTF) che mostrano una diminuzione della

resistenza con un aumento della forza applicata alla superficie attiva.

La sensibilità alla forza è ottimizzata per l'uso nel controllo tattile umano di dispositivi elettronici.

Gli FSR non sono una cella di carico o un estensimetro, sebbene abbiano proprietà simili.

Gli FSR non sono adatti per misurazioni di precisione.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 167

Facendo riferimento alla figura, all'estremità della forza inferiore della caratteristica forza-resistenza, è evidente una risposta

simile a un interruttore. Questa soglia di attivazione, o "forza di rottura", fa oscillare la resistenza da più di 100 kΩ a circa 10

kΩ (l'inizio dell'intervallo dinamico che segue una legge di potenza) è determinato dallo spessore e dalla flessibilità del substrato

e del rivestimento, dalle dimensioni e dalla forma dell'attuatore e dallo spessore dell'adesivo distanziatore (lo spazio tra gli

elementi conduttivi affacciati). La forza di rottura aumenta con l'aumentare della rigidità del substrato e del rivestimento, delle

dimensioni dell'attuatore e dello spessore dell'adesivo distanziatore. Eliminare l'adesivo o tenerlo ben lontano dall'area in cui

viene applicata la forza, come il centro di un grande dispositivo FSR, gli darà un riposo inferiore resistenza (ad esempio

resistenza stand-off).

ESERCITAZIONE ARDUINO

Rilevare il campo di variazione della resistenza del sensore in Thinkercad.

NB:

Le misure della resistenza del sensore vanno

fatte scollegate dall’alimentazione!

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 168

ESERCIZIO CON SENSORE DI FORZA

Accendere una striscia di led in modo proporzionale alle forza rilevata dal sensore.

CODICE

#define fsrpin A0
#define led1 2
#define led2 3
#define led3 4
#define led4 5
#define led5 6
#define led6 7

int fsrreading;

void setup() {
 Serial.begin(9600);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);
 pinMode(led4, OUTPUT);
 pinMode(led5, OUTPUT);
 pinMode(led6, OUTPUT);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 169

void loop() {

 fsrreading = analogRead(fsrpin);

 Serial.println(fsrreading);

 if (fsrreading > 200) {
 digitalWrite(led1, HIGH);
 }
 else digitalWrite(led1, LOW);
 if (fsrreading > 450) {
 digitalWrite(led2, HIGH);
 }
 else digitalWrite(led2, LOW);
 if (fsrreading > 550) {
 digitalWrite(led3, HIGH);
 }
 else digitalWrite(led3, LOW);
 if (fsrreading > 650) {
 digitalWrite(led4, HIGH);
 }
 else digitalWrite(led4, LOW);
 if (fsrreading > 800) {
 digitalWrite(led5, HIGH);
 }
 else digitalWrite(led5, LOW);
 if (fsrreading > 900) {
 digitalWrite(led6, HIGH);
 }
 else digitalWrite(led6, LOW);
}

COMPITO

1- Utilizzare il sensore di forza per avviare un motore DC 5V quando la forza applicata supera i 5N.

2- Utilizzare due sensori di forza per verificare se un oggetto è posizionato al centro di un appoggio (la forza rilevata dai
sensori sarà uguale) e usare due led di colore diverso per indicare se è sbilanciato a destra o sinistra.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 170

INTERRUPT E CONTEGGIO IMPULSI DA UN TRASDUTTORE

Un interrupt (interruzione) è un evento che viene generato in presenza di una variazione di livello (da 05V o 50V) su un

particolare pin di Arduino (pin 2 e 3 per la scheda Arduino UNO).

Questo evento viene gestito direttamente dal microcontrollore ed è controllabile via software tramite delle apposite istruzioni.

Quando viene generata una interruzione è possibile eseguire del codice in modo automatico che interrompe

momentaneamente il normale flusso di codice all’interno del blocco loop().

Nello schema di figura il generatore di funzioni d’onda viene utilizzato per simulare un trasduttore (es. encoder ottico) che

genera un treno di impulsi con frequenza proporzionale al valore della grandezza fisica misurata.

Variabili di tipo “volatile” (salvata nella memoria RAM di Arduino)

Una variabile deve essere dichiarata volatile ogni volta che il suo valore può essere modificato da qualcosa al di

fuori del controllo della sezione di codice in cui appare come ad esempio in un thread (processo parallelo) in

esecuzione contemporaneamente al codice principale.

In Arduino, l'unico posto in cui è probabile che ciò avvenga è nelle sezioni di codice associate agli interrupt,

chiamate routine di servizio di interrupt.

volatile int contatore = 0;

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 171

Utilizzo shield Arduino FC-03 per contare gli impulsi rilevati da un encoder

CODICE

volatile int contatore = 0;

void interrupt0()
{
 contatore++;
}

void setup() {
 Serial.begin(9600);
 // uso il pin2 per l'interrupt (solo il 2 o il 3 di Arduino sono abilitati agli interrupt)
 attachInterrupt(digitalPinToInterrupt(2),interrupt0,RISING);
}

void loop() {
 delay(1000);
 Serial.print(contatore);
 Serial.println(" impulsi");
 contatore = 0;
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 172

ENCODER

L’encoder è un dispositivo elettromeccanico che converte la posizione angolare meccanica del suo asse rotante in posizione

angolare elettrica sotto forma di segnale elettrico numerico digitale e/o analogico.

Collegato ad opportuni circuiti elettronici e con appropriate connessioni meccaniche, l’encoder è in grado di misurare

spostamenti angolari, movimenti rettilinei e circolari nonché velocità di rotazione e accelerazioni.

Esistono varie tecniche per il rilevamento del movimento angolare: capacitiva, magnetica, induttiva, potenziometrica e

fotoelettrica.

Gli encoder si possono classificare nelle seguenti categorie:

• ottici

• a variazione di campo magnetico/elettrico.

Gli encoder vengono principalmente impiegati nei seguenti settori applicativi: controllo dei processi industriali, robot industriali,

macchine utensili, strumenti di misura, confezionamento, plotter, laminatoi e macchine per il taglio delle lamiere, bilance e bilici,

antenne, telescopi, impianti ecologici, macchine da stampa e da imballaggio, macchine tessili e conciarie, gru, carri ponte,

presse, macchine per la lavorazione del legno, della carta, del marmo , del cemento, del vetro ecc.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 173

ENCODER OTTICI

ENCODER INCREMENTALE

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 174

ENCODER INCREMENTALE: RISOLUZIONE

ENCODER INCREMENTALE: ESEMPIO D’USO

ENCODER ASSOLUTO

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 175

ENCODER ASSOLUTO: SINGLE-TURN O MULTI-TURN

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 176

MISURA DI VELOCITÀ DAL SEGNALE ENCODER

ENCODER AVANZATI

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 177

ESERCIZIO INCREMENTALE

Quale risoluzione (numeri di impulsi per giro) deve avere un encoder per una misura angolare di 0.25°?

Supponendo che l’encoder sia solidale con un albero di un motore in rotazione alla velocità di 720 r.p.m. (Fig. 1), calcolare il

periodo del segnale rilevato dal fototransistor.

SOLUZIONE

Numero impulsi = 360° / 0.25 = 1440 (impulsi per ogni giro)

Rotazioni al secondo = 720 / 60 = 12 giri/s

Frequenza (impulsi al secondo) = 1440  12 = 17280 Hz

Periodo = 1 / f = 1 17280 = 57,8 µs

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 178

ENCODER OTTICO AD INFRAROSSI

L'encoder ottico a infrarossi (emettitore  fotodiodo IR, ricevitore  fototransistore) è un sensore di velocità.

Viene utilizzato per misurare la velocità di un oggetto rotante come un l’albero di un motore.

Schema reale

Disco encoder 20 fori da fissare sull’albero motore

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 179

SIMULARE L’ENCODER CON UN GENERATORE DI IMPULSI

CODICE

#include <Adafruit_LiquidCrystal.h>
Adafruit_LiquidCrystal lcd_1(0);
volatile int contatore = 0;
const int nfori= 20;
int rpm= 0;

void interrupt0() { contatore++; }

void setup() {
 lcd_1.begin(16, 2);
 lcd_1.print("RPM");
 Serial.begin(9600);
 // uso il pin2 per l'interrupt (solo il 2 o il 3 di Arduino)
 attachInterrupt(digitalPinToInterrupt(2),interrupt0,RISING);
}

void loop() {
 delay(1000);
 rpm= 60* contatore / nfori;
 Serial.print(rpm);
 Serial.println(" impulsi");
 lcd_1.setCursor(0, 1);
 lcd_1.print(rpm);

 contatore = 0;
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 180

CODICE con ENCODER

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2); // set the LCD address to 0x27 for a 16 chars and 2 line display

const nholes= 20.0; // numero di fori disco encoder
float rpm = 0;
int pid;
unsigned long millisBefore;
volatile int holes;

void setup()
{

Serial.begin(9600);
lcd.init();
lcd.backlight();
lcd.setCursor(0, 0);
lcd.print("Speed Sensor");
lcd.setCursor(0, 1);
lcd.print("Test");
pinMode(2, INPUT);
attachInterrupt(digitalPinToInterrupt(2), count, FALLING);
delay(1000);
lcd.clear();

}

void loop()
{

print_to_LCD();
if (millis() - millisBefore > 1000) {
rpm = (holes / nholes)*60;
holes = 0;
millisBefore = millis();
}
delay(100);

}

void print_to_LCD() {

lcd.setCursor(0, 0);
lcd.print("Holes : ");
lcd.print(holes);
lcd.print(" ");
lcd.setCursor(0, 1);
lcd.print("RPM : ");
lcd.print(rpm);
lcd.print(" ");

}

void count() {

holes++;
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 181

⌂

ESEMPI

APPLICAZIONI SENSORI

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 182

SISTEMA DI CONTROLLO QUALITA’ SACCHI DI CEMENTO

Realizzare un sistema di controllo di qualità dell’integrità di sacchi di cemento su nastro trasportatore.

Si utilizzino 4 sensori ad ultrasuoni per misurare la distanza dalla superficie del sacco (in 4 punti diversi).

Se la misura di un sensore è inferiore a una certa distanza di setup (es. 100cm) il sacco è rotto.

Un sensore di prossimità (fotocellula FC) segnala la presenza del sacco sotto i sensori ad ultrasuoni e consente di fermare il

nastro trasportatore per effettuare il controllo di qualità (0.5s).

Se il sacco è rotto viene attivata una lampada di emergenza e il nastro trasportatore viene mantenuto fermo.

Solo quando un operatore attiva il pulsante di START il sistema riprende il funzionamento.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 183

CODICE

// ingressi sensori
int pinC1 = 3;
int pinC2 = 4;
int pinC3 = 5;
int pinC4 = 6;
int pinFC = 2;
int pinStart=10;

// uscite
int pinM = 8;
int pinEM = 9;

// variabili
int statoFC = 0;
int misC1 = 0;
int misC2 = 0;
int misC3 = 0;
int misC4 = 0;
int statoStart=0;
int statoM=1;
int statoSacco=0; // 0=ok; 1=rotto

void setup()
{
 Serial.begin(9600);

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 184

 pinMode(pinC1, INPUT);
 pinMode(pinC2, INPUT);
 pinMode(pinC3, INPUT);
 pinMode(pinC4, INPUT);
 pinMode(pinStart, INPUT);
 pinMode(pinFC, INPUT_PULLUP);

 pinMode(pinM, OUTPUT);
 pinMode(pinEM, OUTPUT);

 // attivo motore M nastro
 digitalWrite(pinM, HIGH);
 // spengo emergenza EM
 digitalWrite(pinEM, LOW);
}

void loop()
{
 // leggo stato fotocellula FC
 statoFC = digitalRead(pinFC);
 Serial.print("FC="); Serial.println(statoFC);

 // controllo presenza SACCO
 if (statoFC==1) {
 Serial.println("Presenza SACCO");
 // fermo motore M
 digitalWrite(pinM, LOW); statoM= LOW; // fermo

 // misura distanze in 4 punti; se una inferiore a 100 sacco rotto
 misC1 = readUltrasonicDistance(pinC1, pinC1);
 delay(10); // Wait for 100 millisecond(s)
 Serial.print("C1="); Serial.println(misC1);
 misC2 = readUltrasonicDistance(pinC2, pinC2);
 delay(10); // Wait for 100 millisecond(s)
 Serial.print("C2="); Serial.println(misC2);
 misC3 = readUltrasonicDistance(pinC3, pinC3);
 delay(10); // Wait for 100 millisecond(s)
 Serial.print("C3="); Serial.println(misC3);
 misC4 = readUltrasonicDistance(pinC4, pinC4);
 delay(10); // Wait for 100 millisecond(s)
 Serial.print("C4="); Serial.println(misC4);
 delay(500);

 // se una delle distanze è inferiore a 100 il sacco è rotto
 if ((misC1<100) || (misC2<100) || (misC3<100) || (misC4<100)) {
 Serial.println("SACCO rotto");
 statoSacco= 1;
 // accendo energenza EM
 digitalWrite(pinEM, HIGH);
 }
 // se sacco rotto rimosso e quello attuale non è rotto
 else if (statoSacco==0) {
 Serial.println("SACCO OK");
 statoSacco= 0;
 // accendo motore M e spengo EM
 digitalWrite(pinM, HIGH); statoM= HIGH;
 digitalWrite(pinEM, LOW);
 statoM= HIGH;
 }
 }

 // controllo stato pulsante START
 statoStart= digitalRead(pinStart);
 Serial.print("Start="); Serial.println(statoStart);
 if (statoStart== HIGH) {
 Serial.println("Avvio NASTRO");
 statoSacco=0; // sacco rotto rimosso --> riparte nastro

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 185

 digitalWrite(pinM, HIGH); statoM= HIGH;
 digitalWrite(pinEM, LOW);
 }

 delay(1000);
}

// torna distanza in cm sulla base del tempo rilevato dal sensore
long readUltrasonicDistance(int triggerPin, int echoPin)
{
 pinMode(triggerPin, OUTPUT); // Clear the trigger
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 // Sets the trigger pin to HIGH state for 10 microseconds
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 pinMode(echoPin, INPUT);
 // Reads the echo pin, and returns the sound wave travel time in microseconds
 return 0.01723 * pulseIn(echoPin, HIGH);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 186

SISTEMA DI CONTROLLO QUALITA’ SACCHI DI CEMENTO CON SCARTO

Progettare un sistema di controllo qualità sacchi di cemento da 25 Kg.

Un serie di 8 sensori analogici fornisce lo stato del cartone del sacco in tempo reale mentre questo scorre

sul nastro trasportatore. Prevedere una lettura ogni 0.5sec per un totale di 10 letture.

Per semplificare la simulazione in Thinkercad usare un solo sensore ad ultrasuoni U1.

Un sensore di prossimità (fotocellula FC) indica la presenza del sacco davanti al sistema di scarto (controllo

qualità terminato).

Se il sacco non ha passato il controllo di qualità allora il nastro viene fermato e un sistema pneumatico

spinge il sacco fuori dal nastro traspostatore.

Dimensionare il cilindro pneumatico necessario per spostare il sacco di cemento ipotizzando un

coefficiente di attrito pari a 0.8. Scegliere poi da catalogo MW il cilindro idoneo.

Sistema pneumatico di scarto sacchi

rotti

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 187

SISTEMA CONTA PEZZI CON SENSORE ULTRASUONI

Realizzare un sistema “conta pezzi” che passano di fronte a un sensore ad ultrasuoni (es. nastro trasportatore).

Schema Arduino con sensore Parallax

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 188

CODICE

int state= 0; // pezzo non presente
int laststate=0; // pezzo non presente
int counter= 0; // numero di pezzi passati
int cm = 0; // distanza sotto la quale si considera pezzo presente

void setup()
{
 pinMode(7, INPUT); // sensore ultrasuoni
 Serial.begin(9600);
}

void loop()
{
 // rilevo fronte di discesa segnale sensore
 if (state==1 && laststate==0) {
 counter++;
 Serial.print(counter);
 Serial.println(" pezzi");
 }
 laststate = state; // aggiorno ultimo stato

 // measure the ping time in cm
 cm = 0.01723 * readUltrasonicDistance(7, 7);
 delay(10); // Wait for 100 millisecond(s)
 if (cm <=100) { state= 1; } else { state= 0; }
}

long readUltrasonicDistance(int triggerPin, int echoPin)
{
 pinMode(triggerPin, OUTPUT); // Clear the trigger
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 // Sets the trigger pin to HIGH state for 10 microseconds
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 pinMode(echoPin, INPUT);
 // Reads the echo pin, and returns the sound wave travel time in microseconds
 return pulseIn(echoPin, HIGH);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 189

⌂

ATTUATORI

In ingegneria, gli attuatori sono capaci di trasformare un segnale di input (normalmente elettrico) in movimento, come esempi di

attuatori sono i motori elettrici, pistoni idraulici, relè, polimeri elettroattivi, attuatori piezoelettrici, ecc.

I motori sono usati soprattutto quando si richiedono movimenti circolari, ma possono essere impiegati per applicazioni lineari

trasformando un movimento da circolare a lineare utilizzando un trasduttore a vite senza fine. D'altra parte, alcuni attuatori,

come quelli piezoelettrici, sono intrinsecamente lineari.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 190

MOTORE IN CORRENTE CONTINUA (C.C.)

Un motore in corrente continua (CC) è una macchina elettrica che converte l’energia elettrica (V, I) in energia meccanica (Coppia

motrice , n° giri).

Applicando la massima tensione per cui il motore è stato progettato si otterrà la massima velocità.

Diminuendo la tensione applicata il numero di giri calerà di conseguenza (in generale insieme alla coppia motrice).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 191

https://www.youtube.com/watch?v=peGZkxusheI

775 D SHAFT

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 192

PWM (PULSE WIDE MODULATION): MODULAZIONE DI LARGHEZZA D’IMPULSO

Un microcontrollore come Arduino non è in grado di generare un segnale analogico di tensione.

Tuttavia utilizzando la PWM è in grado di generare un’onda quadra ad alta frequenza modulata in ampiezza che viene percepita

dalla maggior parte degli utilizzatori (resistenze, lampadine, motori CC) come una tensione continua.

Il circuito sottostante mostra l’effetto di una tensione periodica a 2kHz a onda quadra di ampiezza 5V e duty cycle del 50%

(frazione di tempo in cui l’onda è allo stato attivo in proporzione al periodo totale).

Si nota, dalla tensione media e dalla corrente assorbita, che l’effetto sulla lampada è lo stesso generato dall’alimentazione a CC a

2.5V.

Con Arduino si può generare un segnale PWM a 8 bit (255 combinazioni) da 0 a 5V (risoluzione = 5/255=0.196V).

 5*0 = 0V

 5*0,25 = 1,25V

 5*0,5 = 2,5V

 5*0,75 = 3,75V

 5*1 = 5V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 193

ESERCIZIO PWM MOTORE CC

Regolare la velocità di rotazione del motore mediante un potenziometro e la tecnica PWM.

NB: ai capi di un motore va sempre messo un diodo di protezione del transistor di comando (anodo sul +) che è stato omesso per

semplificare lo schema.

Il motore DC non può essere alimentato direttamente da un PIN di Arduino poiché la corrente richiesta dal motore è superiore a

quella fornita da un PIN. Se la corrente richiesta dal motore è di poche centinaia di mA si può usare l’uscita 5V di Arduino. Se si

usa un alimentatore dedicato è necessario mettere la massa in comune con quella di Arduino per garantire il corretto

funzionamento (serve lo stesso riferimento per la massa).

La regolazione della velocità del motore DC si effettua in 2 modi:

- regolando la tensione a capi del motore (ad esempio con un potenziometro)

- regolando il tempo (PWM) in cui la tensione massima di alimentazione del motore viene applicata ai suoi capi

Il 2° metodo permette di regolare la velocità mantenendo anche la coppia motrice sempre elevata mentre nel 1° modo la

coppia cala proporzionalmente alla tensione applicata.

Per fornire una corrente sufficiente al motore è necessario utilizzare un amplificatore (transistor) comandato in PWM da un PIIN

di Arduino.

L’oscilloscopio permette di visualizzare il segnale di regolazione PWM (0-5V) generato da un PIN di Arduino.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 194

CODICE

int motorPin = 9; // PWM
int potPin = A0; // POTENTIOMETER
int potValue = 0;

void setup()
{
 pinMode(potPin, INPUT);
 pinMode(motorPin, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 // read the value from the sensor
 if (analogRead(potPin) != potValue)
 {
 potValue = analogRead(potPin);
 analogWrite(motorPin, potValue/4);
 Serial.println(potValue);
 }
 delay(20); // Wait for 20ms
}

DISTURBI ELETTROMAGNETICI NEI MOTORI CC A SPAZZOLE

Molti piccoli motori a corrente continua presentano un forte "rumore di spazzola". Questo si ripercuote sui circuiti di Arduino e

ne causa un funzionamento instabile. Questo problema può essere risolto saldando al motore alcuni condensatori ceramici

antirumore da 0,1 µF.

Ne serviranno 3 in totale: 1 tra i terminali del motore e 1 da ciascun terminale alla carcassa del motore.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 195

ESERCIZIO RICAVARE LA CURVA “V- N°” E “V-POT.” DEL MOTORE C.C. A 12V ASSEGNATO

Per ricavare la curva “V-n°” e “V-Pot.” del motore si utilizza la tecnica PWM facendo variare la tensione sul motored a 0 a 12V

con passo 1 volt e leggendo il numero di giri sul corpo del motore.

Tramite la tabella in EXCEL disegnare i grafici x-y.

Nota: la tensione dell’alimentatore deve essere 12.8V per compensare la Vce del transistor.

Codice

#define DC_MOTOR_PIN 9

void setup() {
 pinMode(DC_MOTOR_PIN, OUTPUT);
}

void loop() {
 // Faccio varia tensione 0->12V passo 1v
 for(int i = 1; i <= 12; i=i+1){
 analogWrite(DC_MOTOR_PIN, int(255*i/12));
 delay(1000);
 }

}

Tensione N° giri/min I (mA) Pot. (W)

1
2
3
4
5
6
7
8
9
10
11
12

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 196

ESERCIZIO PWM MOTORE CC + COMANDI SU SERIALE

Regolare la velocità di rotazione del motore con un comando inviato tramite il monitor seriale.

I comandi da inviare sulla seriale sono numeri compresi tra 0 e 100 (0  100% della velocità massima).

NB: ai capi di un motore va sempre messo un diodo di protezione del transistor di comando (anodo sul +) che è stato omesso per

semplificare lo schema.

CODICE PER RILEVARE NUMERI SULLA SERIALE

if (Serial.available() > 0)
{
 Int numeroSeriale = Serial.parseInt(); // converte in un numero i caratteri ricevuti sulla porta seriale
 Serial.println(numeroSeriale);

 if (numeroSeriale == 0) {
 Serial.println(numeroSeriale);
 }
 else if (numero Seriale==100) {
 Serial.println(numeroSeriale);
 }
 else {
 Serial.println(“non valido”);
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 197

CODICE

int motorPin = 9; // PWM
int potPin = A0; // POTENTIOMETER
int potValue = 0;
int numeroSeriale; // variabile che contiene i dati ricevuti sulla seriale

void setup()
{
 pinMode(potPin, INPUT);
 pinMode(motorPin, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 //SERIALE: controllo se ci sono dati …
 if (Serial.available() > 0)
 {
 numeroSeriale = Serial.parseInt(); // converte in un numero i caratteri ricevuti sulla porta seriale
 Serial.println(numeroSeriale);

 if (numeroSeriale >=0 && numeroSeriale <=100)
 {
 int speed = numeroSeriale *255 / 100; // converte 0-100 in 0-255
 Serial.println(speed);
 analogWrite(motorPin, speed);
 }
 }

 // read the value from the sensor
 if (analogRead(potPin) != potValue)
 {
 potValue = analogRead(potPin);
 analogWrite(motorPin, potValue/4);
 Serial.println(potValue);
 }

 delay(20); // Wait for 20ms
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 198

REGOLAZIONE VELOCITA’ MOTORE C.C. CON MODULO MOSFET IRF520

Regolare il numero di giri del motore CC tramite un potenziometro e il modulo MOSFET IRF520.

Attenzione a non superare la tensione massima richiesta dal motore CC.

“non simulabile”

CODICE

#define PWM 3 // solo alcuni PIN sono abilitati a uscita PWM
int pot;
int out;

void setup() {
 Serial.begin(9600);
 pinMode(PWM,OUTPUT);
}

void loop() {
 pot=analogRead(A0);
 out=map(pot,0,1023,0,255); // 255  massima tensione  massima velocità
 analogWrite(PWM,out);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 199

ENCODER

L'encoder è un apparato elettromeccanico che converte la posizione angolare del suo asse rotante in un segnale elettrico digitale.

Viene generalmente collegato all’albero di un motore per misurare il numero di giri o lo spostamento angolare.

Si vuole regolare la velocità di rotazione di un motore DC di potenza (12V – 550mA) dotato di encoder e si vuole visualizzare il

segnale fornito dall’encoder sull’oscilloscopio.

CODICE

#define PWM_OUT 3
#define POT_IN A0
int setpoint = 0;

void setup() {
Serial.begin(9600); // begins the serial communication
pinMode(POT_IN, INPUT); // sets the potentiometer as an input and controller
pinMode(PWM_OUT, OUTPUT); // sets pin 3 as a PWM output for the speed control
}

void loop() {
 setpoint = analogRead(POT_IN);
 analogWrite(PWM_OUT, setpoint/4);
 Serial.println(setpoint);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 200

INVERSIONE VERSO DI ROTAZIONE MOTORE C.C. CON 2 RELE’

Per regolare il verso di rotazione di un motore CC sono necessari due relè opportunamente collegati al motore.

Questo sistema NON consente anche la regolazione del numero di giri del motore.

Per ottenere il duplice effetto (verso e regolazione velocità) è necessario un ponte ad H costituito da 4 transistor.

ESERCIZIO VERSO ROTAZIONE MOTORE CON RELE’

Controllare il verso di rotazione del motore C.C. con due pulsanti utilizzando 2 relè.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 201

CODICE

int incomingByte = 0; // for incoming serial data

void setup() {
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);

 pinMode(4, INPUT);
 pinMode(5, INPUT);

 Serial.begin(9600);
}

void loop() {

 int statoP1= digitalRead(4);
 if (statoP1== HIGH) {
 Serial.println("M1 ORARIO");
 digitalWrite(2, HIGH);
 digitalWrite(3, LOW);
 }
 else
 {
 Serial.println("M1 STOP");
 digitalWrite(2, LOW);
 }

 int statoP2= digitalRead(5);
 if (statoP2== HIGH) {
 Serial.println("M1 ANTIORARIO");
 digitalWrite(2, LOW);
 digitalWrite(3, HIGH);
 }
 else
 {
 Serial.println("M1 STOP");
 digitalWrite(3, LOW);
 }

 delay(100);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 202

ESERCIZIO VERSO ROTAZIONE MOTORE C.C CON RELE’ + COMANDI SERIALE

Impostare il verso di rotazione del motore DC attraverso comandi inviati dal monitor seriale.

1  rotazione oraria

2  rotazione antioraria

3-4  stop

Per Arduino sono disponibili delle schede (shield) con 2-4-8-16 relè che permettono di semplificare il circuito.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 203

CODICE

int incomingByte = 0; // for incoming serial data

void setup() {
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);

 pinMode(4, INPUT);
 pinMode(5, INPUT);

 Serial.begin(9600);
}

void loop() {

 //SERIALE leggo numeri da 0-9 (1 cifra)
 if (Serial.available() > 0) {
 incomingByte = Serial.parseInt();
 Serial.println(incomingByte);

 if (incomingByte==1) {
 Serial.println("M1 ORARIO");
 digitalWrite(2, HIGH);
 digitalWrite(3, LOW);
 }
 else if (incomingByte==2) {
 Serial.println("M1 ANTIORARIO");
 digitalWrite(2, LOW);
 digitalWrite(3, HIGH);
 }
 else if (incomingByte==3) {
 Serial.println("STOP");
 digitalWrite(2, HIGH);
 digitalWrite(3, HIGH);
 }
 else if (incomingByte==4) {
 Serial.println("STOP");
 digitalWrite(2, LOW);
 digitalWrite(3, LOW);
 }
 else
 {
 Serial.println("non valido");
 }
 }

 delay(100);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 204

GESTIONE VERSO DI ROTAZIONE MOTORE C.C. CON 4 BJT

Per ottenere il duplice effetto di regolare il verso di

rotazione e la velocità di rotazione del motore è

necessario un ponte ad H costituito da 4 transistor.

La soluzione proposta impiega 4 transistor di tipo N.

I diodi in parallelo ai transistor servono da protezione

contro le corrente inverse generate dal motore all’avvio e

allo spegnimento.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 205

ESERCIZIO VERSO ROTAZIONE MOTORE C.C CON BJT + COMANDI SERIALE

Impostare il verso di rotazione del motore DC attraverso comandi inviati dal monitor seriale.

1  rotazione oraria

2  rotazione antioraria

3-4  stop

CODICE

int pinBJT1= 2;
int pinBJT2= 3;
int speed=255;
int incomingByte = 0; // for incoming serial data

void setup() {
 pinMode(pinBJT1, OUTPUT);
 pinMode(pinBJT2, OUTPUT);
 Serial.begin(9600);
}

void loop() {
 //SERIALE leggo numeri da 0-9 (1 cifra) associati
 if (Serial.available() > 0) {
 incomingByte = Serial.parseInt();
 Serial.println(incomingByte);

 if (incomingByte==1) {
 Serial.println("M1 ORARIO");
 digitalWrite(pinBJT1,HIGH);
 digitalWrite(pinBJT2,0);
 }
 else if (incomingByte==2) {
 Serial.println("M1 ANTIORARIO");
 digitalWrite(pinBJT1,0);
 digitalWrite(pinBJT2,HIGH);
 }
 else if (incomingByte==3) {
 Serial.println("STOP");
 digitalWrite(pinBJT1, HIGH);
 digitalWrite(pinBJT2, HIGH);
 }
 else if (incomingByte==4) {
 Serial.println("STOP");
 digitalWrite(pinBJT1, 0);
 digitalWrite(pinBJT2, 0);
 }
 else
 {
 Serial.println("Non valido!");
 }

 }

 delay(100);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 206

ESERCIZIO VERSO ROTAZIONE MOTORE CON BJT + COMANDI SERIALE + VELOCITA’

Impostare il verso di rotazione del motore DC attraverso comandi inviati dal monitor seriale e la velocità tramite un

potenziometro.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 207

CODICE

int pinBJT1= 5;
int pinBJT2= 6;
int pinPotenziometro=A0;
int speed=255;
int incomingByte = 0; // for incoming serial data

void setup() {
 pinMode(pinBJT1, OUTPUT);
 pinMode(pinBJT2, OUTPUT);
 pinMode(pinPotenziometro, INPUT);
 Serial.begin(9600);
}

void loop() {
 speed = analogRead(pinPotenziometro)/4; //1024--> 256)

 //SERIALE leggo numeri da 0-9 (1 cifra) associati
 if (Serial.available() > 0) {
 incomingByte = Serial.parseInt();
 Serial.println(incomingByte);

 if (incomingByte==1) {
 Serial.println("M1 ORARIO");
 analogWrite(pinBJT1,speed);
 analogWrite(pinBJT2,0);
 }
 else if (incomingByte==2) {
 Serial.println("M1 ANTIORARIO");
 analogWrite(pinBJT1,0);
 analogWrite(pinBJT2,speed);
 }
 else if (incomingByte==3) {
 Serial.println("STOP");
 analogWrite(pinBJT1, 255);
 analogWrite(pinBJT2, 255);
 }
 else if (incomingByte==4) {
 Serial.println("STOP");
 analogWrite(pinBJT1, 0);
 analogWrite(pinBJT2, 0);
 }
 else
 {
 Serial.println("Non valido!");
 }
 Serial.print("v= "); Serial.println(speed);
 }

 delay(100);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 208

DRIVER L298N H-BRIDGE

Questa scheda di controllo per motori è basata sul driver Dual H-Bridge L298N e permette di pilotare due motori C.C. oppure un

motore passo-passo bipolare con tensione operativa compresa nel range tra 5V e 35V e una corrente massima di 2A,

controllandone la velocità e la direzione.

NOTA BENE:

Per motori a bassa resistenza interna (tipica degli stepper) è necessario un driver di corrente e non un driver di tensione come

l'L298N. I motori a bassa impedenza in generale vanno sono controllati in corrente e non in tensione.

Per valori di resistenza degli avvolgimenti del motore oltre 30-60 ohm un L298N funziona senza bruciarsi, ma la velocità massima

è inferiore rispetto a quella ottenibile con un driver di corrente.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 209

CODICE

//L298N pilotare un motore DC con Arduino

//definizione dei pin

static int pinPotenziometro = A0; //pin analogico per valori del potenziometro

static int mA = 12; //pin digitale per gli stati logici da inviare al modulo

static int mB = 13; //pin digitale per gli stati logici da inviare al modulo

static int pinMotore = 11; //pin PWM per variare velocità motore

//variabili

int potenziometro; //valore letto dal potenziometro sul pin A0

int velocita; //valore PWM in uscita dal pin 11

void setup() {

 Serial.begin(9600);

 //inizializzo variabili

 potenziometro = 0;

 velocita = 0;

 //definisco tipologia pin

 pinMode(pinPotenziometro, INPUT); //input da potenziometro per la velocità

 pinMode(mA, OUTPUT); //output per lo stato logico del pin IN1 del modulo L298N

 pinMode(mB, OUTPUT); //output per lo stato logico del pin IN2 del modulo L298N

 pinMode(pinMotore, OUTPUT); //output PWM per il pin EN1 del modulo L298N

 //Imposto verso di rotazione del motore

 /*

 mA | mB | Evento

 -----|-------|----------------------

 LOW | LOW | fermo

 LOW | HIGH | rotazione oraria

 HIGH | LOW | rotazione antioraria

 HIGH | HIGH | Fermo

 */

 digitalWrite(mA, LOW);

 digitalWrite(mB, HIGH);

}

void loop() {

 //leggo il valore analogico del potenziometro sul pin A0 (0-1023.

 potenziometro = analogRead(pinPotenziometro);

 // Il range dei valori PWM e' da 0 a 255

 velocita = map(potenziometro, 0, 1023, 0, 255);

 Serial.print("velocita = ");

 Serial.print(velocita);

 analogWrite(pinMotore, velocita);

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 210

UTILIZZO DI UNA CURVA MOTORE CC

Le curve del motore vengono utilizzate principalmente in due scenari:

 determinare quale motore (e riduttore) utilizzare in una particolare applicazione

 apprendere di più sullo stato di un motore attualmente in funzione in un sistema.

DETERMINAZIONE DI QUALE MOTORE (E RIDUTTORE) UTILIZZARE

Consideriamo un pezzo che pesa 40N, sollevato da un braccio lungo 0.5 m, che scorre attraverso un cambio 100:1 :

Il motore che aziona questo braccio dovrà produrre una coppia motrice di 0,2 N · m .

Questo requisito di coppia in uscita può quindi essere confrontato con le curve motore pubblicate per saperne di più sullo stato
del motore durante questa azione.

Il motore A raggiunge 0,2 N · m di coppia a circa 13000 giri/min, assorbendo circa 40 A.
Con un cambio 100:1, ciò equivale a una velocità del braccio di 130 giri/min.
A questa coppia, il motore funziona con un'efficienza di poco inferiore al 60%, al di sotto del suo picco.

https://content.vexrobotics.com/vexpro/images/SampleA-02262018.png

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 211

Il motore B può raggiungere 0,2 N · m di coppia a circa 5000 giri/min, assorbendo circa 20 A.
Con un cambio 100:1, ciò equivale a una velocità del braccio di 50 giri/min.
A questa coppia, il motore funziona a circa il 60% di efficienza, molto vicino al suo picco.

Utilizzando questi tipi di calcoli, un tecnico può combinare queste informazioni con altri dettagli del sistema per determinare il
miglior motore per la propria applicazione:
-50 giri sono troppo lenti?
-40 A sono troppo alti per un assorbimento di corrente?
-è necessaria una maggiore efficienza per motivi termici o di batteria?

E’ evidente che ci sono una serie di variabili coinvolte nel fare questa determinazione:
rapporto di trasmissione, lunghezza del braccio e persino peso del pezzo di gioco.

Nota: assorbimento di corrente al picco di potenza

Per una scelta più rapida, noti il tempo necessario a svolgere un’azione, si può calcolare semplicemente la quantità di lavoro
eseguita (Lavoro = Massa × Gravità × Altezza) in un determinato periodo di tempo (Potenza = Lavoro / Tempo) e selezionano un
motore corrispondente quel fabbisogno di potenza.

Ad esempio, se un meccanismo deve sollevare un oggetto di 20kg a 1m di altezza in 1 secondo:

Nell'esempio sopra, il motore B è la scelta migliore per un fabbisogno di potenza di 196 W (215W di picco contro i 330W del
motore A).

https://content.vexrobotics.com/vexpro/images/motor-data/dc-motor-intro-motor-b-2.PNG

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 212

Tuttavia, cosa succede quando ci sono due motori che corrispondono a quella richiesta di potenza di picco?

In genere è meglio scegliere il motore con l'assorbimento di corrente più basso, poiché ciò prolungherà la durata della batteria e
ridurrà lo sforzo sull'impianto elettrico. Ciò diventa particolarmente importante sotto carico sostenuto, quando è necessario
tenere conto dei limitatori di corrente o degli interruttori automatici.

APPROFONDIRE LO STATO DI UN MOTORE ATTUALMENTE IN FUNZIONE IN UN SISTEMA

"Perché un motore si brucia dopo aver sollevato l'oggetto?"

Se un motore è già stato installato e un ingegnere vuole saperne di più sullo stato del sistema, la stessa teoria di cui sopra può
essere invertita. A una tensione nota, è necessario un valore misurato (come l'assorbimento di corrente) per determinare il resto
degli attributi del motore in quel momento.

Ad esempio, si consideri ancora il motore A.
Se si utilizza un amperometro per misurare un assorbimento di corrente di 25 A, ora è noto che il motore sta esercitando circa
0,11 N · m di coppia e sta funzionando intorno al suo picco di efficienza di poco inferiore a 70 %. Tuttavia, se l'amperometro sta
leggendo 140 A, il motore sta attualmente funzionando in una condizione di stallo estremo.

Le curve dei motore CC spesso sono realizzate a 12 V.
Le quattro caratteristiche chiave (velocità libera/corrente, coppia di stallo/corrente) si adattano approssimativamente in modo
proporzionale alla tensione del sistema.
Se il motore A funzionasse a 6 V, la sua corrente di stallo scenderebbe da 130 A a 65 A e la sua coppia di stallo scenderebbe da
0,7 N · m a 0,35 N · m. Se una lettura dell'amperometro mostra un assorbimento di corrente di 25 A:

MASSA TERMICA

La maggior parte dei motori, se spinti alla coppia di stallo o alla potenza di picco, si bruceranno se lasciati lì per troppo
tempo. Tuttavia, quel tempo accettabile varia da motore a motore. Alcuni motori possono avere una potenza di picco molto
elevata, ma possono funzionare a piena potenza solo in brevi raffiche. Altri motori non hanno problemi a rimanere alla loro
potenza di picco, ma possono presentare altri inconvenienti (assorbimento di corrente maggiore, potenza di picco inferiore,
ecc.).

Poiché questa proprietà è così intrinsecamente dipendente dal sistema e dall'applicazione, in genere non viene pubblicata dai
produttori.
La massa termica può essere approssimata dividendo la potenza di picco di un motore per il suo peso. Per esempio:

 Picco di potenza Peso del motore Massa termica

Motore A 330 W 0,75 libbre 440 W/libbra

Motore B 215 W 2,16 libbre 99,5 W/libbra

In questo scenario, il motore A sarebbe più utile per brevi raffiche di potenza elevata, mentre il motore B potrebbe sostenere la
sua potenza molto più a lungo.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 213

ESEMPI CURVE DI POTENZA MOTORE 775 A 12- 6- 4 VOLT

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 214

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 215

CURVE POTENZA MOTORI DC RS-550

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 216

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 217

SERVOMOTORI

Un servomotore elettrico rotativo è un motore che permette il controllo di precisione della posizione angolare.

Il servomotore classico è composto da due elementi principali: il sensore di posizione o feedback e il motore a cui si può

aggiungere un riduttore e un freno in caso di necessità.

Richiede inoltre un azionamento e/o un controllore più o meno sofisticato a seconda del livello di controllo che si vuole

raggiungere.

Hobby Industriale

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 218

GESTIONE SERVOMOTORE DIRETTA CON ARDUINO

Muovere l’albero del servo a destra e a sinistra (180°0° e viceversa) con passo di 1°.

CODICE

#include <Servo.h>

Servo servo_9;

int pos = 0;

void setup()
{
 servo_9.attach(9, 500, 2500);
}

void loop()
{
 // sweep the servo from 0 to 180 degrees in steps of 1 degrees
 for (pos = 0; pos <= 180; pos += 1) {
 servo_9.write(pos);
 delay(15); // Wait for 15 millisecond(s)
 }
 for (pos = 180; pos >= 0; pos -= 1) {
 servo_9.write(pos);
 // wait 15 ms for servo to reach the position
 delay(15); // Wait for 15 millisecond(s)
 }
}

 COMPITO

1. Modificare il circuito affinché il servomotore abbia una alimentazione dedicata con transistor NPN.

2. Modificare il codice per gestire due servomotori tramite comandi inviati dal monitor seriale

(1  motore DX, 2  motore SX, 3  entrambi i motori e 4  stop).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 219

ESERCIZIO GESTIONE SERVOMOTORE CON ARDUINO E POTENZIOMETRO

simulabile su “wokwi.com”

CODICE

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer

int val; // variable to read the value from the analog pin

void setup() {

 myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop() {

 val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and 1023)

 val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180)

 myservo.write(val); // sets the servo position according to the scaled value

 delay(15); // waits for the servo to get there

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 220

MOTORE STEPPER (PASSO-PASSO)

Il motore passo paso è un tipo di motore a corrente continua sincrono senza spazzole che, diversamente dagli altri tipi standard

di motori elettrici, non ruota in continuazione per un numero arbitrario di giri fino a che non viene interrotto il flusso di corrente

continua. Al contrario, i motori passo passo sono dispositivi con controllo digitale delle sorgenti in input e in output, per l'avvio e

l'arresto di precisione.

Sono costruiti in modo tale che la corrente che li attraversa passi in una serie di bobine disposte in fase, che possono essere

attivate o disattivate in rapida sequenza. Questo permette al motore di girare una frazione di rotazione alla volta, ed è a

ciascuno di questi predeterminati passi (step in inglese) che il motore deve il suo nome (motore stepper).

Un motore passo passo è costruito in modo da suddividere una singola rotazione completa in un numero di gran lunga minore di

rotazioni parziali uguali.

Il risultato finale è che un motore passo passo può trasferire movimenti minuziosamente accurati a parti meccaniche che

richiedono elevati gradi di precisione. Di default il motore passo-passo sposta l’albero motore di 1,8 gradi per passo (200 passi

per giro). In generale la velocità massima di un motore stepper è di circa 1000 rpm.

All’aumentare della velocità diminuisce la coppia motrice disponibile (che può essere aumentata montando un riduttore).

Usando opportuni driver il motore supporta anche mezzo passo (0,9 gradi per passo / 400 passi per giro) ed anche
micropassi più piccoli (ad es. ½, 1/4 o 1/8 di passo).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 221

Tipicamente le due coppie polari sono identificate dai seguenti colori. In ogni caso conviene fare riferimento alla scheda tenica

del produttore.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 222

DRIVER A4988

Quando si utilizza un motore passo-passo è necessario un chip driver (es. driver A4988) in grado di fornire l’elevata quantità di

corrente richiesta dalle bobine del motore.

I motori passo-passo standard hanno 200 passi per giro (i passi sono distanziati di 1,8 gradi).

Il driver stepper supporta il microstepping: consnete di muovere il motore a meno di un passo per ogni impulso.

Il microstepping consente un controllo più preciso del movimento del motore (con una riduzione della coppia motrice).

Utilizzare i pin MS1/MS2/MS3 per selezionare la configurazione microstepping per il driver stepper:

Come collegare il driver A4988 con il motore passo-passo e il controller Arduino.

NOTA BENE:

Per motori a bassa resistenza interna (tipica degli stepper) è necessario un driver di corrente e non un driver di tensione come

l'L298N. I motori a bassa impedenza sono controllati in corrente, non in tensione.

Per valori di resistenza dell'avvolgimento oltre 30-60 ohm un L298N funziona senza bruciarsi, ma la velocità massima

è molto inferiore rispetto a quella ottenibile con un driver di corrente.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 223

UTILIZZO DEL DRIVER PASSO-PASSO A4988

Collegare i pin del motore passo-passo ai pin 1B/1A/2A/2B del driver.

Il pin RESET deve essere HIGH e quindi si può collegare al pin SLEEP adiacente che è impostato HIGH di default.

Utilizzare il pin STEP per spostare il motore passo-passo.

Ogni impulso ALTO su questo pin sposterà il motore di un passo (o micropasso, a seconda dei pin MS1/MS2/MS3).

Quando il pin DIR è ALTO, il motore passo-passo si sposterà in senso orario.

Quando il pin DIR è BASSO, il motore si muoverà in senso antiorario.

Ad esempio, se DIR, MS1 e MS3 sono LOW e MS2 è HIGH (modalità 1/4 step), l'impulso del pin STEP sposterà il motore di 1/4

step (0,45 gradi) in senso antiorario.

simulabile su “wokwi.com”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 224

CODICE

#define DIR_PIN 5 // X

#define STEP_PIN 2 // X

#define EN_PIN 8

#define DELAY_ST 5000

int stps=400; // 2 giri completi

void setup() {

 pinMode(DIR_PIN, OUTPUT);

 pinMode(STEP_PIN, OUTPUT);

 pinMode(EN_PIN, OUTPUT);

 digitalWrite(EN_PIN, LOW);

 delay(1000);

}

void loop() {

 // rotazione ORARIA

 step(true, DIR_PIN, STEP_PIN, stps);

 delay(1000);

 // rotazione ANTIORARIA

 step(false, DIR_PIN, STEP_PIN, stps);

 delay(1000);

}

// dir = true= oraria

void step(boolean dir, byte dirPin, byte stepperPin, int steps)

{

 digitalWrite(dirPin, dir);

 delay(100);

 for (int i = 0; i< steps; i++) {

 digitalWrite(stepperPin, HIGH);

 delayMicroseconds(DELAY_ST);

 digitalWrite(stepperPin, LOW);

 delayMicroseconds(DELAY_ST);

 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 225

UTILIZZO DEL DRIVER PASSO-PASSO A4988 + POTENZIOMETRO

Regolare al velocità di rotazione del motore stepper tramite un potenziometro.

simulabile su “wokwi.com”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 226

CODICE

#define DIR_PIN 5 // X

#define STEP_PIN 2 // X

#define EN_PIN 8

int stps=400; // 2 giri completi

int pot, delay_step;

void setup() {

 pinMode(DIR_PIN, OUTPUT);

 pinMode(STEP_PIN, OUTPUT);

 pinMode(EN_PIN, OUTPUT);

 digitalWrite(EN_PIN, LOW);

 delay(1000);

}

void loop() {

 speedControl();

 // rotazione ORARIA

 step(true, DIR_PIN, STEP_PIN, stps);

 delay(1000);

 // rotazione ANTIORARIA

 step(false, DIR_PIN, STEP_PIN, stps);

 delay(1000);

}

// dir = true= oraria

void step(boolean dir, byte dirPin, byte stepperPin, int steps)

{

 digitalWrite(dirPin, dir);

 delay(100);

 for (int i = 0; i< steps; i++) {

 digitalWrite(stepperPin, HIGH);

 delayMicroseconds(delay_step);

 digitalWrite(stepperPin, LOW);

 delayMicroseconds(delay_step);

 }

}

void speedControl() {

 pot = analogRead(A0); // Read the potentiometer value

 delay_step = map(pot, 0, 1023, 1000, 5000); // Convert the analog input from 0 to 1024, to 300 to 3000

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 227

UTILIZZO DEL DRIVER PASSO-PASSO A4988 CON MEZZO PASSO

simulabile su “wokwi.com”

CODICE

#define DIR_PIN 3
#define STEP_PIN 4
#define MS1_PIN 8

#define DELAY_ST 2000

void setup() {
 pinMode(DIR_PIN, OUTPUT);
 pinMode(STEP_PIN, OUTPUT);
 pinMode(MS1_PIN, OUTPUT);
 digitalWrite(MS1_PIN, LOW);
 delay(1000);
}

void loop() {

 // rotazione ORARIA
 digitalWrite(DIR_PIN, HIGH);

 // 1 giro completo
 for (int i = 0; i < 200; i++) {

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 228

 // un passo
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(DELAY_ST);
 }

 delay(1000);

 // // rotazione ANTIORARIA
 digitalWrite(DIR_PIN, LOW);

 // 1 giro completo
 for (int i = 0; i < 200; i++) {
 //un passo
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(DELAY_ST);
 }

 delay(1000);

 // microstepping 1/2 --> MS1 alto
 digitalWrite(MS1_PIN, HIGH);

 // rotazione ORARIA
 digitalWrite(DIR_PIN, HIGH);

 // 1/2 giro
 for (int i = 0; i < 200; i++) {
 // un passo
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(DELAY_ST);
 }

 delay(1000);

 // rotazione ANTIORARIA
 digitalWrite(DIR_PIN, LOW);

 // 1/2 giro
 for (int i = 0; i < 200; i++) {
 //un passo
 digitalWrite(STEP_PIN, HIGH);
 delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN, LOW);
 delayMicroseconds(DELAY_ST);
 }

 delay(1000);
 digitalWrite(MS1_PIN, LOW);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 229

GUIDA LINEARE CON MOTORE STEPPER E BARRA FILETTATA T8 PASSO 2MM

La guida è dotata di un finecorsa meccanico “FC” che fornisce segnale “1” quando NON è premuto e “0” quando è premuto.

All’accensione il blocco mobile deve portarsi alla “HOME” definita da stato “FC=0”.

A partire da “HOME” si potranno poi effettuare gli spostamenti assegnati (in mm) dal ciclo proposto.

FC

T8 passo 2mm

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 230

#include <LiquidCrystal_I2C.h>
#define I2C_ADDR 0x27
#define LCD_COLUMNS 20
#define LCD_LINES 4
LiquidCrystal_I2C lcd(I2C_ADDR, LCD_COLUMNS, LCD_LINES);

// FC finecorsa posizione HOME
// rotazione oraria --> allontana slitta dal FC
// rotazione oraria --> avvicina slitta al FC
#define DIR_PIN 5 // X
#define STEP_PIN 2 // X
#define EN_PIN 8 // pin abilitazioe driver
#define FC_PIN 11 // driver

int steps_x_round= 200; // 200 steps al giro
int pot; // potenziometro per velocità
int delay_step=1000;
int FC_STATE = LOW; // stato finecorsa
int HOME_STATE=LOW; // per sapere se sono a HOME
int FLAG_STOP=LOW;
float position;

void setup() {
 Serial.begin(115200);
 lcd.begin(16, 2);

 pinMode(DIR_PIN, OUTPUT);
 pinMode(STEP_PIN, OUTPUT);
 pinMode(EN_PIN, OUTPUT);
 pinMode(FC_PIN, INPUT_PULLUP);
 digitalWrite(EN_PIN, LOW);

 // Attivo LCD
 lcd.init(); lcd.backlight();
 lcd.setCursor(0, 0); lcd.print("...");

 delay(1000);
}

void loop() {
 //HOME antioraria --> vado alla posizione di riposo
 stepHOME(false, DIR_PIN, STEP_PIN, 20000); // 200 mm di corsa max
 delay(1000);

 if (FLAG_STOP== LOW) {
 //oraria--> mi spoto di 5mm --> 5/2mm=2.5 * 200 passi=500 step
 step(true, DIR_PIN, STEP_PIN, 500);
 FLAG_STOP= true;
 }

 delay(1000);

}

// dir = true= oraria
void step(boolean dir, byte dirPin, byte stepperPin, int steps)
{
 digitalWrite(dirPin, dir);
 for (int i = 0; i< steps; i++) {
 FC_STATE = digitalRead(FC_PIN);
 if (FC_STATE == LOW) {
 Serial.println("premuto");
 HOME_STATE= HIGH;
 position= 0.0;
 break;
 }
 if (FC_STATE == HIGH) {
 Serial.println("non premuto");
 digitalWrite(stepperPin, HIGH);
 delayMicroseconds(delay_step);
 digitalWrite(stepperPin, LOW);

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 231

 delayMicroseconds(delay_step);

 position= 2.0 * i / steps_x_round;
 Serial.println("mm "); Serial.println(position);
 lcd.setCursor(0, 0); lcd.print("mm "); lcd.print(position);
 }
 }
 position= position + 2.0 / steps_x_round;
 Serial.println("mm "); Serial.println(position);
 lcd.setCursor(0, 0); lcd.print("mm "); lcd.print(position);
}

void stepHOME(boolean dir, byte dirPin, byte stepperPin, int steps)
{
 // SE NON SONO A HOME
 if (HOME_STATE == LOW) {
 digitalWrite(dirPin, dir);
 delay(100);
 for (int i = 0; i< steps; i++) {
 FC_STATE = digitalRead(FC_PIN);
 if (FC_STATE == LOW) {
 Serial.println("premuto");
 HOME_STATE= HIGH;
 position= 0.0;
 break;
 }
 else if (FC_STATE == HIGH) {
 Serial.println("non premuto");
 digitalWrite(stepperPin, HIGH);
 delayMicroseconds(delay_step);
 digitalWrite(stepperPin, LOW);
 delayMicroseconds(delay_step);
 }
 }
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 232

GUIDA LINEARE CON MOTORE STEPPER E CINGHIA 2GT

La guida è dotata di due finecorsa meccanici “FC” che forniscono segnale “1” quando NON premuti e “0” quando premuti.
All’accensione il blocco mobile deve portarsi alla “HOME” definita da stato “FC_X=0”.
A partire da “HOME” si potranno poi effettuare gli spostamenti assegnati (in mm) dal ciclo proposto.
Il finecorsa “FC_Y” consente di evitare spsotamenti fuori scala.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 233

DRIVER DRV8825 CONTRO A4988

Possiamo controllare i motori passo-passo con altri driver come il DRV8825.

Il principio di funzionamento, le connessioni e la codifica sono quasi le stesse per entrambi questi driver.

La differenza tra loro sta nelle loro caratteristiche tecniche.

Il DRV8825 è un driver passo-passo di Texas Instruments che può essere utilizzato come sostituto diretto del driver Allegro

A4988 poiché le loro connessioni sono le stesse.

Le tre differenze principali tra loro sono che il DR8825

 può fornire più corrente rispetto all'A4988 senza raffreddamento aggiuntivo (1,5 A vs 1 A)

 ha una tensione di alimentazione massima più alta (45 V vs 35 V)

 offre una risoluzione microstepping più elevata (32 vs 16 microstep)

Altri driver più recenti come il TMC2208 presentano caratteristiche ancora migliori e soprattutto una silenziosità in

funzionamento decisamente migliore dei precedenti.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 234

MOTORI ASINCRONI 230V / 400V

Il motore asincrono è chiamato anche motore a induzione poiché funziona secondo il principio dell’induzione elettromagnetica.

Il motore asincrono è generalmente abbreviato in ASM o IM. Il rotore di un motore asincrono gira più lentamente del campo

magnetico rotante presente nello statore, cioè in modo asincrono rispetto allo statore.

La differenza tra la velocità dello statore e la velocità del rotore è chiamata anche scorrimento “s”. Se la velocità del rotore è

uguale alla velocità dello statore, lo scorrimento è nullo e il motore asincrono non eroga alcuna coppia positiva.

Nel funzionamento come generatore il rotore gira più velocemente del campo rotante dello statore. A causa della differenza di

velocità, si genera una coppia negativa che cerca di frenare il rotore.

I motori asincroni che funzionano direttamente con corrente alternata bifase o trifase senza inverter hanno un’efficienza

inferiore rispetto ai motori sincroni a magneti permanenti. Tuttavia con un inverter possono raggiungere rendimenti simili.

Un motore asincrono è costituito dai componenti indicati nella figura sottostante:

Spaccato di un motore asincrono

Si distinguono due tipologie principlai di motore asincrono:

 con rotore avvolto chiamato anche “ad anello scorrevole”

 con rotore in cortocircuito o più comunemente definito come rotore “a gabbia di scoiattolo”.

La principale differenza tra i due tipi risiede proprio nella struttura del rotore. Lo statore è molto simile per entrambi.

Per la tipologia “ad anello scorrevole”, il rotore è costituito da avvolgimenti veri e propri come quelli dello statore, presenta una
struttura più complessa (spazzole che strisciano sul rotore con possibile interposizione di resistenze per il controllo della fase di
avviamento), necessità di manutenzione periodica e dimensioni d’ingombro elevate.

La tipologia “a gabbia di scoiattolo” ha invece un rotore costituito da sbarre chiuse in cortocircuito che garantiscono una
maggiore semplicità costruttiva, robustezza ed economicità.
Grazie allo sviluppo dell’elettronica di controllo che permette la regolazione della velocità in modo molto semplice ed efficace,
tutte quelle applicazioni che vedevano l’impiego di motori in corrente continua (più facilmente regolabili in velocità con le
vecchie tecnologie) hanno lasciato il posto ai motori asincroni, in particolare a quelli a gabbia di scoiattolo, che vengono
comunemente utilizzati per comandare gli azionamenti industriali più svariati.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 235

DATI DI TARGA DI UN MOTORE AC

SIGNIFICATO DEI DATI

Il numero in basso a sinistra “3-M” indica TRIFASE (380V) mentre “1-M” indica MONOFASE (220V).

1- Tipo di motore (T trifase AT autofrenante DP doppia polarità ME monofase con condensatore elettronico…).
 Grandezza della cassa del motore (da 56 a 355). Numero di poli motore (2-4-6-8-4/6-4/8…)
 es: DP112B4/6 motore doppia polarità grandezza 112B a 4 e 6 poli.
2- Matricola o Serial number assegnato dal costruttore
3- Grado di protezione da agenti esterni, IP 55 è standard
4- Classe di isolamento degli avvolgimenti:
 in Cl.F temperatura massima ammissibile 165°, in Cl.H temperatura massima ammissibile 180°
5- Tipo di servizio in funzionamento:
 S1 servizio continuo – S2 servizio di durata limitata – S3 servizio intermittente periodico
6- Fattore di potenza
7- Dati specifici del freno se presente:
 DC freno in corrente continua – AC freno in corrente alternata…
8- Tensione di alimentazione del motore, voltaggi variabili a seconda del Paese di utilizzo
9- Frequenza: 50 o 60Hz
10- Potenza del motore espressa in hp
11- Potenza del motore espressa in kW
12- Giri del motore al minuto
13- Corrente nominale – assorbimenti
14 e 15- Dati del condensatore

* Altri dati particolari del motore: es. C3 cuscinetti C3 – T motore tropicalizzato – 1S motore con 1 scaldiglia anticondensa –
VL motore con volano – A motore con fori anticondensa…

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 236

CARATTERISTICHE DEL MOTORE A INDUZIONE AC

I motori a induzione convertono l’energia elettrica in energia meccanica. La conversione dell’energia si basa sull’induzione

elettromagnetica. Il fenomeno dell’induzione determina lo scorrimento “s” del motore.

Tale scorrimento viene spesso definito come il punto nominale del motore (frequenza (fn), velocità (nn), coppia (Tn),

tensione (Un), corrente (In) e potenza (Pn)).

Al punto nominale: con ns la velocità sincrona:

Quando il motore è collegato a un’alimentazione con tensione e frequenza costanti, ne risulta una curva della coppia:

La coppia massima di un motore a induzione standard (Tmax, detta anche coppia massima in esercizio continuo o coppia alla

tensione di scarica) è normalmente pari a 2-3 volte la coppia nominale.

La coppia massima è disponibile con scorrimento smax, che è maggiore dello scorrimento nominale.

Per utilizzare in modo efficiente un motore a induzione, lo scorrimento del motore dovrebbe rientrare nel campo (- smax ...

smax), che si ottiene controllando la tensione e la frequenza.

Il controllo può essere effettuato utilizzando un convertitore di frequenza.

I convertitori di frequenza limitano normalmente la coppia massima disponibile al 70% di Tmax.

Il campo di frequenza al di sotto della frequenza nominale è denominato campo a flusso costante.

La coppia massima di un motore a induzione è proporzionale al quadrato del flusso magnetico (Tmax ~ ψ 2).

Ciò significa che la coppia massima è tendenzialmente costante in corrispondenza del campo di flusso costante.

Al di sopra della frequenza/velocità nominali, il motore funziona nel range di indebolimento di campo.

Nel range di indebolimento di campo, il motore può funzionare a potenza costante, e pertanto il range di indebolimento di

campo viene talvolta definito campo di potenza costante.

La coppia massima di un motore a induzione è proporzionale al quadrato del flusso magnetico (Tmax ~ ψ 2).

Ciò significa che la coppia massima è tendenzialmente costante in corrispondenza del campo di flusso costante.

Al di sopra del punto di indebolimento di campo, la riduzione della coppia massima è inversamente proporzionale al quadrato

della frequenza.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 237

CORRENTE ASSORBITA DAL MOTORE AC

La corrente del motore a induzione comprende due componenti: corrente reattiva (Isd) e corrente attiva (Isq).

La componente reattiva è legata alla magnetizzazione che si genera nel motore, mentre la corrente attiva è quell ache genera la

coppia motrice del motore.

La corrente totale assorbita dal motore è pari a:

Si può riscontrare che a coppia motore uguale a zero, la componente di corrente attiva è uguale a zero.

Con valori di coppia più elevati, la corrente del motore diventa quasi proporzionale alla coppia.

La corrente di magnetizzazione può essere calcolata con la: doven è il fattore di potenza del motore

Una buona approssimazione della corrente totale del motore è: quando 0,8 * Tn ≤ Tload ≤ 0.7 * Tmax

ES: Il motore da 15 kW è caratterizzato da una corrente nominale di 32 A e da un fattore di potenza di 0,83.

Qual è approssimativamente la corrente di magnetizzazione del motore al punto nominale?

Qual è la corrente approssimativa totale al 120 % della coppia al di sotto del punto di indebolimento di campo?

Al di sopra del punto di indebolimento del campo elettromagnetico le componenti di corrente dipendono anche dalla velocità.

POTENZA DEL MOTORE A INDUZIONE AC

La potenza (di uscita) meccanica del motore può essere calcolata partendo dalla velocità e dalla coppia utilizzando le seguenti

formule:

La potenza di ingresso del motore può essere calcolata a partire dalla tensione U, dalla corrente I e dal fattore di potenza:

L’efficienza del motore è il valore della potenza di uscita diviso per la potenza di ingresso:

ES: La potenza nominale del motore è pari a 15 kW e la velocità nominale a 1.480 giri/min. Qual è la coppia nominale Tn?

ES: Qual è l’efficienza nominale di un motore da 37 kW (Pn = 37 kW, Un =380 V, In =71 A e cos(ϕn) = 0,85)?

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 238

CAPACITÀ DI CARICO TERMICO DEL MOTORE AC

La capacità di carico termico del motore indica la capacità del motore di mantenere una coppia motrice a lungo termine senza

surriscaldarsi e danneggiarsi.

I motori a induzione standard sono generalmente dotati di ventilazione propria (vedi figura).

A causa di questa caratteristica, la capacità di carico

termico del motore decresce proporzionalmente alla

diminuzione della sua velocità.

Questo tipo di comportamento limita la coppia continua

disponibile alle basse velocità.

I motori con sistema di raffreddamento separato possono

essere caricati anche alle basse velocità.

Spesso il sistema di raffreddamento è dimensionato

affinchè l’effetto raffreddante sia lo stesso di quello al

punto nominale.

Sia con sistemi di raffreddamento propri che separati, la

coppia è termicamente limitata nel range di indebolimento

di campo.

E’possibile sovraccaricare un motore in c.a. per brevi periodi di tempo senza surriscaldarlo.

Il sovraccarico di breve termine è prevalentemente limitato da Tmax (verificare i margini di sicurezza).

In termini generici, la capacità di sovraccarico termico di breve termine del convertitore di frequenza è spesso più critica di

quella del motore.

Il tempo di rialzo termico del motore normalmente è superiore ai 15 minuti (motori di piccole dimensioni) fino a qualche ora

(motori più grandi) in base alle dimensioni del motore.

Il tempo di rialzo termico del convertitore di frequenza (normalmente di pochi minuti) è specificato nei manuali dei singoli

prodotti.

La capacità di carico tipica di un motore a

induzione a gabbia di tipo standard in un

azionamento controllato in frequenza

1) senza sistema di raffreddamento separato

 2) con sistema di raffreddamento separato.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 239

STATORE DI UN MOTORE ASINCRONO

Questo componente può essere definito come l’insieme delle parti fisse e costituisce la parte del circuito magnetico che

contiene gli avvolgimenti induttori alloggiati in apposite cave in esso ricavate in corrispondenza della sua superficie interna.

La struttura dello statore è la stessa per entrambe le tipologie di motore AC.

Per condurre il flusso magnetico nel motore elettrico, lo statore e il rotore sono costituiti da diversi strati di lamierino elettrico,

solitamente di 0,5 mm di spessore. Quanto più sottile è il foglio elettrico, tanto minori sono le perdite per correnti parassite nel

motore elettrico e maggiore è la sua efficienza.

Lo statore porta gli avvolgimenti in cui scorre la corrente trifase.

Di norma, lo statore ha tre fasi del motore, che possono essere collegate in configurazione a stella o a triangolo.

Il rotore contiene barre conduttrici o avvolgimenti in cortocircuito, a seconda del tipo di motore asincrono.

Gli avvolgimenti statorici trifase possono essere collegati a stella oppure a triangolo se il motore è dotato di morsettiera con 6

morsetti. In questo modo è possibile alimentare lo stesso motore con tensioni trifase di rete differenti. Infatti la condizione

necessaria al funzionamento del motore è che ciascun avvolgimento statorico sia sottoposto alla sua tensione nominale.

Perciò collegare a stella con tensione concatenata (fase-fase) 400V o a triangolo con tensione concatenata (fase-fase) 230V sarà

del tutto equivalente in quanto gli avvolgimenti saranno sempre sottoposti ad una tensione di 230V (400V/1,73).

Collegamenti stella/triangolo del motore asincrono

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 240

1 lato alimentazione di rete 400V
1 lato alimentazione di rete 400V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 241

COLLEGAMENTO A STELLA E A TRIANGOLO

Nel collegamento a triangolo i tre avvolgimenti sono collegati tra loro (un capo dell’avvolgimento R sarà collegato al capo di S;
l’altro capo S sarà collegato al capo T e l’altro capo T all’altro capo S).
Se si prova a disegnare questo collegamento, si ottiene, appunto, un triangolo.
A livello elettrico, ad ognuno dei tre capi di giunzione si collega, sempre singolarmente, ognuna delle 3 fasi.
In questa maniera la differenza di potenziale ai capi di ognuno degli avvolgimenti sarà di 380 V.

Nel collegamento a stella si collega ogni fase (singolarmente) ai tre capi di tre avvolgimenti (resistivi o induttivi); gli altri tre capi
si collegano tra loro per formare il centro stella.
Se si prova a disegnare lo schema di collegamento, si ottiene una stella a tre punte.
A livello elettrico, il centro stella ha potenziale zero mentre la differenza di potenziale tra il centro stella ed ognuna delle fasi (e
quindi la differenza di potenziale ai capi di ogni avvolgimento) sarà, nel caso di trifase a 380V, di 220V.
Generalmente il collegamento triangolo è quello che corrisponde alla potenza nominale del motore.

OSSERVAZIONI

Cosa cambia collegare un motore trifase a stella o a triangolo?
La corrente assorbita nel collegamento a triangolo è 3 volte quella assorbita nel collegamento a stella.
Di conseguenza anche la coppia motrice è 3 volte maggiore. Gli avvolgimenti di un motore progettati per una tensione nominale
di 220 V, non possono essere collegati a triangolo in un sistema trifase a 380 V, ma solo a stella; possono ovviamente essere
collegati a triangolo in un sistema trifase di 220 V.
Un collegamento a stella ha minore assorbimento?
Non bisogna illudersi che un motore, le cui caratteristiche sono riferite al collegamento a triangolo, assorba meno corrente a
carico con il collegamento a stella. Se il carico è immutato ed il motore è in grado di avviarsi anche collegato a stella, a regime
funzionerà con uno scorrimento più elevato ma (ATTENZIONE!) con un surriscaldamento che può essere eccessivo.
Il numero di giri varia se collego a triangolo o a stella?
A vuoto la velocità del motore è la stessa in entrambi i collegamenti.
A carico invece occorre fare le seguenti considerazioni.
Con il collegamento a stella la coppia si riduce ad un terzo di quella a triangolo, a parità di tensione di linea.
Se la coppia del carico è costante (esempio: motore di un argano che solleva un dato peso), il motore deve rallentare per
aumentare la coppia. Aumenta quindi lo scorrimento, aumentano le perdite ed il motore si scalda di più.
Nel caso in cui la coppia diventasse insufficiente, potrebbe capitare che il motore addirittura si fermi.
Se cambio il collegamento nella morsettiera Da stella a triangolo cosa succede?
Se il collegamento nella morsettiera viene modificato per essere da stella a triangolo, aumenta la tensione ai capi di ogni
avvolgimento del 73% per cui è disponibile una coppia massima 3 volte maggiore.
Quando posso utilizzare il collegamento a triangolo? Perchè?
Se la tensione concatenata non è superiore alla tensione nominale dell’avvolgimento è possibile utilizzare il collegamento a
triangolo, altrimenti il motore rischierebbe di bruciarsi.
Perchè se inverto le fasi in un motore lo stesso inverte il senso di rotazione?
Perché cambia il senso di rotazione del campo rotante.
Perchè il collegamento stella triangolo viene preferito rispetto al collegamento diretto?
Perché si ritiene troppo elevata, quindi dannosa, la corrente di avviamento diretta.
Ma, nella maggior parte dei casi, è un timore infondato se il motore è alimentato direttamente dalla rete.
Con avviamento stella-triangolo il motore si scalda di più che in modo diretto?
Dipende dalla durata dell’avviamento.La coppia accelerante si riduce a stella, quindi aumenta il tempo di avviamento.

 Le fasi RST sono quelle della linea di

alimentazione a monte del motore.

 Le fasi U V W sono quelle all'entrata

delle fasi del motore;

 Le fasi X Y Z sono quelle finali (lato

centro stella se c'e') delle fasi

del motore.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 242

ROTORE DEL MOTORE ASINCRONO

Il rotore viene posizionato all’interno dello statore e costituisce il circuito indotto della macchina.

Per un motore a “gabbia di scoiattolo”, il rotore è costituito da un sistema di sbarre conduttrici (rame o alluminio) coassiali
all’asse di rotazione e pressofuse direttamente nelle cave ricavate lungo tutta la periferia esterna del nucleo ferromagnetico.

Le sbarre vengono chiuse in cortocircuito da due anelli conduttori posti agli estremi che costituiscono anche un fissaggio
meccanico per le sbarre stesse.
Si ottiene così un rotore estremamente compatto e robusto, al quale si fissa anche l’albero del motore.

Il campo magnetico indotto che costituisce il principio di funzionamento del motore porta quindi in rotazione l’albero del
motore convertendo così energia elettrica in meccanica.

Il rotore a gabbia di scoiattolo è il più utilizzato perché non ha anelli di scorrimento e quindi ha una durata maggiore.
Inoltre, la produzione del rotore è molto più economica.

In un rotore “ad anello scorrevole”, il rotore è costituito da avvolgimenti anziché da barre.

Gli avvolgimenti non sono cortocircuitati nel rotore, ma sono condotti all’esterno tramite anelli di scorrimento e cortocircuitati
tramite resistenze aggiuntive.

Il flusso di corrente nel rotore può essere influenzato da resistenze esterne al motore elettrico.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 243

VELOCITA’ DI ROTAZIONE DEL MOTORE A INDUZIONE AC

I motori CA funzionano tramite il principio dell'induzione (come per trasformatori).
Quando la la corrente scorre in una bobina si crea un campo magnetico.
Il campo magnetico prodotto può indurre una tensione e una corrente in una bobina vicina.

La tensione d'ingresso, posta ai capi dell'avvolgimento primario, produce un flusso magnetico che va a concatenarsi con
l'avvolgimento secondario, producendo su quest'ultimo una tensione dipendente dal numero di spire dei due avvolgimenti.
Ad esempio, se l'avvolgimento primario conta 10000 spire, mentre quello secondario solo 1000, il rapporto tra le tensioni sarà
1/10, quindi applicando sul primario la nostra tensione da 220V avremo sul secondario 22V.
Altra caratteristica interessante è che la potenza assorbita dal secondario è la stessa che viene erogata dal primario, ne consegue
che se l'uscita è aperta, in ingresso non viene assorbita potenza (in realtà c'è una piccola potenza dissipata) anche se
apparentemente i due cavi sono cortocircuitati da un conduttore!
Inoltre, se il secondario eroga 220W, quindi 10A, avremo che nel primario circola solo 1A, motivo per cui nei trasformatori la
bobina con meno spire utilizza un conduttore dalla sezione maggiore.

Questo fenomeno di induzione non è limitato solo a una bobina vicina. Può verificarsi in qualsiasi oggetto metallico.
Nel caso di un motore a corrente alternata, il campo magnetico creato nelle bobine dello statore può indurre una tensione e una
corrente nelle barre conduttive del rotore. Quella tensione e quella corrente produrranno il proprio campo magnetico, che
quindi interagirà con il campo che lo ha prodotto.

La velocità alla quale il campo magnetico si muove (ruota) attorno allo statore è nota come velocità sincrona Ns e dipende dalla
frequenza CA e dal numero di poli nello statore. È data da

Ns = 120 f / P dove: Ns = velocità sincrona, f = frequenza di rete Hz, P = numero di poli (per fase) nello statore

Per un motore a due poli funzionante a 60 Hertz, la velocità sincrona è di 3.600 giri/min. A 50 Hz è di 3.000 giri/min. .

Se si aumenta il numero di poli a quattro, la velocità si riduce a 1.800 giri/min a 60Hz e 1.500 a 50Hz (la velocità di sincronismo si
dimezza poiché il campo magnetico percorre solamente 180° nello spazio dei 360° dell’onda sinusoidale).

La velocità alla quale ruota il rotore è nota come velocità di scorrimento Nr e sarà sempre inferiore alla velocità sincrona nello
statore. La ragione di ciò è perché nessuna tensione e corrente viene indotta nel rotore quando viaggiano in modo sincrono.

La velocità di slittamento effettiva dipende dal design del motore e varia a seconda del modello e della potenza.

La velocità del rotore Nr in condizioni nominali è sempre minore di un 3-6% di quella di sincronismo:

è il fenomeno dello scorrimento (slip) che consente la produzione della coppia.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 244

Dalla formula che definisce lo scorrimento è possibile esprimere la velocità di rotazione effettiva del rotore:

s = (Ns -Nr) / Ns

dove s è lo scorrimento, Ns è la velocità di sincronismo e Nr è la velocità reale alla quale ruota il rotore.

Per i motori a potenza frazionaria a pieno carico, la velocità di slittamento può arrivare fino al 95 percento di Ns , mentre i
modelli con potenza superiore possono funzionare al 99 percento di Ns .

Come discusso nella mia serie sull'alimentazione CA, l'onda sinusoidale CA monofase raggiunge la sua tensione di picco due volte
durante un ciclo di 360 gradi e questi picchi si verificano a intervalli di 180 gradi. In un circuito trifase, la fase 2 ritarda la fase uno
di 120 gradi e la fase 3 ritarda la fase due di 120 gradi.

Quando tutte e tre le fasi scorrono insieme, la tensione raggiunge picchi ogni 60 gradi.

Questa relazione è illustrata nella Figura 2. Le frecce mostrano la separazione di 120 gradi delle tre fasi e le linee verticali
colorate mostrano i picchi di tensione di fase ogni 60 gradi. Questa relazione di picco non solo fornisce un'alimentazione più
uniforme, ma può anche produrre un campo magnetico rotante nello statore di un motore trifase.

Figura 2. Onda sinusoidale del motore AC trifase e picchi di tensione

La Figura 3 mostra il posizionamento dei poli per un motore trifase a due poli.

Ci sono un totale di sei poli o due poli per fase.
I poli della Fase 1 si trovano a 360 e 180 gradi mentre i poli della Fase 2 sono a 300 e 120 gradi.
I poli della Fase 3 si trovano a 60 e 240 gradi. Il risultato è un totale di sei poli distanziati di 60 gradi l'uno dall'altro.
Questa separazione di 60 gradi non è una coincidenza.
Viene fatto appositamente per sfruttare la separazione di 60 gradi dei picchi di tensione trifase.

Perché i poli di fase si trovano in questa particolare sequenza?
Il polo primario della Fase 2 è a sinistra del primario della Fase 1 e il polo primario della Fase 3 è a destra.
Con riferimento alla Figura 2, il picco che segue il picco della Fase 1 è la Fase 3 e il picco successivo è la Fase 2.
I motori sono avvolti in questo modo per fornire una direzione di rotazione prevedibile.

In questo caso particolare la rotazione sarebbe oraria. L'inversione di due qualsiasi dei collegamenti di fase cambierà le relazioni
di picco di fase e farà ruotare il motore nella direzione opposta. Il "rotolamento" di tali connessioni (ad esempio, lo spostamento
da 1 a 2, da 2 a 3 e da 3 a 1) non cambierà le relazioni di fase e, pertanto, la direzione di rotazione rimarrà la stessa.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 245

IL CAMPO MAGNETICO ROTANTE

Abbiamo visto come la tensione può raggiungere il picco in un circuito trifase e come i poli dello statore sono allineati per
corrispondere ai picchi di tensione, ma perché il campo magnetico rotazionale si verifica automaticamente?

La Figura 4 pone il flusso lineare dei picchi di tensione mostrati nella Figura 2 e le posizioni dei poli mostrate nella Figura 3 in una
prospettiva rotazionale.

Figura 3. Posizionamento dei poli del motore CA

Le immagini dello statore mostrano i tre gruppi di poli e la loro polarità dai punti da 1 a 7.

L'immagine del grafico mostra i picchi di tensione di fase per gli stessi punti.

Al punto 1, la fase 1 è al suo picco positivo e viene generato un campo magnetico massimo nei poli 1 e 1A.

Al punto 2, la fase 3 è al suo picco negativo e il campo magnetico massimo è generato nei poli 3 e 3A.

Al Punto 3, il campo massimo si è spostato ai Poli 2 e 2A.

Se studi gli altri punti vedrai che questa tendenza continua in senso orario.

Di conseguenza, le tre fasi creano un campo rotante automatico nello statore.

Se due dei conduttori di fase in ingresso vengono scambiati, il campo magnetico ruoterà in senso antiorario.

a) Motore a 2 poli per fase (3 fasi x 1 coppia di poli = 3 coppie)

b) Motore a 4 poli per fase (3 fasi x 2 coppie di poli = 6 coppie)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 246

Figura 4. Il campo magnetico rotante

Come accennato in precedenza, la velocità del motore dipende sia dalla frequenza che dal numero di poli.

La velocità del motore cambierà in modo direttamente proporzionale alla variazione della frequenza. Ad esempio, a 30 Hertz un
motore a 1.800 giri/min ruoterà a 900 giri/min.

Se si aggiunge un ulteriore set di poli a ciascuna fase dello statore mostrato nella Figura 3, anche la sua velocità diminuirà del 50
percento. Il tempo necessario per una rotazione di 360 gradi del campo dello statore è proporzionale sia alla frequenza che al
numero di poli.

I motori trifase possono essere progettati per funzionare a due diverse velocità e la relazione di velocità dipende dal metodo di
avvolgimento utilizzato.

I motori a due velocità e ad avvolgimento singolo utilizzano uno statore avvolto per una singola velocità, ma quando
l'avvolgimento è collegato in modo diverso, cambia anche il numero di poli collegati.

Ad esempio, in una connessione sono collegati quattro poli, ma con la connessione alternata ne sono collegati otto.

Con questo metodo di avvolgimento, esisterà sempre un rapporto di velocità due a uno (1.800 giri/min/900 giri/min).

Di solito, la potenza del freno (BHP) a bassa velocità sarà un quarto di quella a piena velocità.

Tuttavia, i progetti a coppia costante manterranno mezzo BHP alla velocità inferiore.

I motori a due velocità e due avvolgimenti sono in realtà due motori avvolti su un unico statore.

Sebbene questi motori siano tipicamente più grandi e più costosi, non sono limitati al rapporto di velocità due a uno dei motori a
singolo avvolgimento.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 247

MOTORE DC O MOTORE AC?

La differenza fondamentale tra le due tipologie di motore elettrico è innanzitutto il tipo di alimentazione:

 il motore DC è un motore in corrente continua, monofase

 il motore AC è un motore in corrente alternata, monofase o trifase

ll motore DC è ampiamente utilizzato sia per applicazioni che richiedono piccole potenze, come apparecchiature ad uso

domestico, che per applicazioni con potenze anche di diversi kW, come ad esempio trazioni ferroviarie e marine.

Il motore in corrente continua è inoltre adatto per applicazioni che richiedono alta precisione come robot industriali e macchine

utensili.

Il motore AC è invece il più diffuso nell’industria ed è adatto per applicazioni in cui è necessario effettuare movimenti continui e

con pochi cambi di velocità e in cui non è necessario fare posizionamento, come ad esempio nastri trasportatori, pompe,

ventole, ecc.

Questi due tipi di motore elettrico si differenziano tra loro anche per la velocità che riescono a raggiungere.

Il motore AC riesce a raggiungere una velocità di rotazione superiore rispetto al motore DC, questo perchè nel motore a corrente

alternata la velocità viene controllata variando la corrente nel motore, mentre nel motore a corrente continua la velocità viene

controllata variando la frequenza, (di solito per mezzo di un convertitore di frequenza).

VANTAGGI DI UN MOTORE AC:

Il motore a corrente alternata presenta diversi vantaggi rispetto al motore DC:

 più economico in quanto consuma meno in fase di avviamento;

 richiede poca manutenzione;

 struttura più semplice;

 più robusto e resistente;

 meno soggetto ad usura;

 più adatto ad applicazioni che richiedono alte potenze.

VANTAGGI DI UN MOTORE DC:

 facilità da installazione, anche in sistemi mobili (alimentati a batteria);

 maggiore precision di posizionamento

 controllo della velocità variando la tensione di alimentazione;

 coppia elevata;

 maggiore rapidità nell’avviamento, l’arresto, l’accelerazione e l’inversione di marcia.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 248

REGOLAZIONE DELLA VELOCITA’ DEL MOTORE AC  INVERTER

Uno degli apparecchi elettronici che ha una posizione predominante nel mondo delle applicazioni di potenza, da quelle più

contenute a quelle estremamente elevate è l’inverter che vede le applicazioni più estese nel pilotaggio di motori AC trifase.

Questo dispositivo ha il compito di convertire l’energia fornita da una sorgente in corrente continua in una uscita, ai suoi

morsetti, di grandezze alternate sinusoidali, con ampiezze e frequenze che possono essere opportunamente controllate.

Generalmente nel gergo industriale si intende un dispositivo atto alla regolazione della velocità dei motori trifase.

L’inverter è essenzialmente costituito da sei dispositivi di commutazione S1 – S6 (nella figura rappresentati come MOSFET).

Questi sei interruttori sono collegati a due a due in configurazione a mezzo ponte e il punto comune di ognuno dei tre rami

pilota una fase del motore. Comandando l’attivazione dello switch superiore di un ramo si mette in collegamento la fase relativa

del motore al positivo dell’alimentazione. Ovviamente è indispensabile che non avvenga mai che i due switch di ogni ramo siano

accesi contemporaneamente (pena un corto circuito).

Vale la pena di sottolineare che ad ognuno dei MOSFET è collegato in antiparallelo un diodo che da una parte serve per

consentire una via di richiusura delle correnti e consentire un ritorno dell’energia reattiva dal motore verso il bus di

alimentazione.

Ma questi stessi diodi fungono invece da raddrizzatori quando il motore dovesse agire da generatore e traferire così energia dal

motore verso il DC Link (per esempio in un veicolo elettrico durante la frenata il motore cambia la sua funzione e diventa

generatore, consentendo così di recuperare energia).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 249

Inverter 220V  380V (per motori bassa potenza)

Inverter 380V  380V (per motori alta potenza)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 250

CIRCUITO INVERTER BASATO SU ARDUINO

Un inverter è un dispositivo elettrico che converte la tensione CC.

Questo circuito implementa un semplice inverter programmabile con Arduino per ottenere un'uscita CA a gradini, un'uscita CA

sinusoidale modificata o un'uscita sinusoidale pura.

Hardware richiesto

S.No Componente Qtà

1 Regolatore di tensione 7812 IC 1
2 Transistore SL100 2
3 MOSFET IRF540 2
4 Trasformatore (12-0-12 V CA) 1
5 ArduinoUno 1
6 Resistenza 1KΩ,10KΩ 2,2
7 Fili di collegamento –
8 Batteria 12V 1

Schema elettrico

Configurazione dei pin del transistor SL100

https://amzn.to/3Y1EPzM
https://amzn.to/3UK2Sk1
https://amzn.to/3iMnT04
https://amzn.to/3W3gUOJ
https://amzn.to/3FeiNRY

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 251

Configurazione pin Mosfet IRF540

FUNZIONAMENTO DEL CIRCUITO

Come possiamo vedere nel circuito, sono coinvolti tre stadi e una batteria SLA da 12 V 5,0 Ah come sorgente di CC.

Il primo stadio è costituito dalla scheda del microcontrollore Arduino, che è programmata per fornire un segnale SPWM

(Sinusoidal Pulse Width Modulation). È possibile modificare il codice per produrre output diversi dai pin Arduino.

Il secondo stadio è lo stadio di commutazione e pilota. L’impulso di uscita dai pin digitali Arduino pilota i transistor di

commutazione SL100 NPN che a loro volta pilotano i MOSFET di potenza IRF540.

Il terzo stadio è lo stadio di uscita, che è costituito da un trasformatore dotato di presa centrale (primario 230 VAC / secondario

12-0-12 VAC). È collegato in modo inverso con il circuito di pilotaggio:

 il lato secondario (12-0-12 VAC) è collegato al MOSFET di potenza

 il lato primario del trasformatore è libero per fornire la tensione in uscita di 230V.

Quando la batteria è collegata a questo circuito, il regolatore di tensione 7812 alimenta la scheda Arduino a tensione costante

(anche se la tensione della batteria varia) e inizia a produrre impulsi di uscita a seconda dello sketch.

Questi impulsi pilotano il transistor SL100 e alimentano il MOSFET IRF540.

L'avvolgimento secondario del trasformatore collegato al MOSFET riceve energia e induce sul secondario un'uscita CA ad alta

tensione 230V.

Tipo di transistor: MOSFET

Polarità del transistor: canale N

Corrente di drenaggio (Id Max): 33A

Voltaggio Vds Max: 100 V.

Potenza (max): 120 W.

Il transistor SL100 è un transistor NPN

di media potenza per uso generico.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 252

Codice dell' inverter Arduino

//Questo codice produce SPWM sui pin D9 e D10 della scheda Arduino Uno.

const int SpwmArry[] = {500,500,750,500,1250,500,2000,500,1250,500,750,500,500}; // Array of SPWM values.

const int SpwmArryValues = 13; //Put length of an Array depends on SpwmArray numbers.

// Declare the output pins and choose PWM pins only

const int sPWMpin1 = 10;

const int sPWMpin2 = 9;

// enabling bool status of Spwm pins

bool sPWMpin1Status = true;

bool sPWMpin2Status = true;

void setup() {
 pinMode(sPWMpin1, OUTPUT);
 pinMode(sPWMpin2, OUTPUT);
}

void loop() {
 // Loop for Spwm pin 1
 for(int i(0); i != SpwmArryValues; i++)
 {
 if(sPWMpin1Status) {
 digitalWrite(sPWMpin1, HIGH);
 delayMicroseconds(SpwmArry[i]);
 sPWMpin1Status = false;
 }
 Else {
 digitalWrite(sPWMpin1, LOW);
 delayMicroseconds(SpwmArry[i]);
 sPWMpin1Status = true;
 }
 }

 // Loop for Spwm pin 2
 for(int i(0); i != SpwmArryValues; i++)
 {
 if(sPWMpin2Status) {
 digitalWrite(sPWMpin2, HIGH);
 delayMicroseconds(SpwmArry[i]);
 sPWMpin2Status = false;
 }
 Else {
 digitalWrite(sPWMpin2, LOW);
 delayMicroseconds(SpwmArry[i]);
 sPWMpin2Status = true;
 }
 }
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 253

AZIONAMENTI AC

Un azionamento in AC comprende normalmente un trasformatore di ingresso (o un alimentatore elettrico), un convertitore di

frequenza, un motore in AC e un carico (ventilatore, nastro trasportatore ecc.).

All’interno del singolo convertitore di frequenza si trovano un raddrizzatore, un collegamento in c.c. e un’unità inverter.

SELEZIONE DEL MOTORE

Il motore elettrico va considerato come una sorgente di coppia. Il motore deve resistere a sovraccarichi di processo ed essere in

grado di produrre una determinata quantità di coppia. La capacità di sovraccarico termico del motore non deve essere superata.

Per determinare la coppia massima disponibile nella fase del dimensionamento è necessario prevedere un margine del 30% per

la coppia massima del motore

SELEZIONE DEL CONVERTITORE DI FREQUENZA

Il convertitore di frequenza viene selezionato in base alle condizioni iniziali e al motore selezionato.

E’ necessario verificare che convertitore di frequenza sia idoneo a produrre la corrente e la potenza richieste.

Verificare anche la capacità di sovraccarico potenziale del convertitore di frequenza in caso di un carico ciclico di breve termine.

DIMENSIONAMENTO DELL’AZIONAMENTO

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 254

AZIONAMENTI MECCANICI CON MOTORI ELETTRICI A INDUZIONE

Consideriamo un nastro trasportatore che deve movimentare dei corpi di massa m.

Il motore AC a induzione M è collegato ad un riduttore a ingrannaggi R chè è collegato a sua volta al rullo di traino del nastro.

Il motore M è caratterizzato da una coppia motrice Mm che dipende dalla sua potenza nominale Pn e dal numero di giri n°:

Pn = Mm * m [w] con  = 2  n°/ 60 [rad/s] n° = rpm= numero di giri /minuto

Il riduttore R ha lo scopo di ridurre il numero di giri del motore (tipicamente alto 1500, 3000 … giri/min.) ad un valore

compatibile con il sistema di movimentazione da implementare. Trascurando il rendimento meccanico del riduttore abbiamo:

Pot = Mm * m = Mr * r con

 - i = rapporto riduzione= m / r

 - Mr = coppia in uscita al riduttore [Nm]

 - r = velocità in uscita al riduttore [rad/s]

L’effetto del riduttore, oltre che a diminuire la velocità di rotazione, è quello di aumentare la coppia Mr per il carico.

Nel moto rettilineo di un corpo che da fermo viene messo in movimento tramite una forza abbiamo: F= m *a [N]

Nel caso di un corpo che viene messo in rotazione rispetto ad un asse abbiamo: M = J *  [Nm] con

J = momento di inerzia del corpo rispetto all’asse di rotazione

 = accelerazione angolare del corpo = ddt  dt è il tempo necessario per portare a regime il sistema da fermo

Per una massa m che ruota ad una distanza r rispetto al’asse di rotazione abbiamo: J= m*r
2
 [Kg m2]

Il calcolo del momento di inerzia J è fattibile per semplici sistemi con geometrie ben definite (cilindri, dischi ecc.).

Per machine e forme complesse il momento di inerzia si ricava con opportune prove sperimentali.

Nel caso di nastri trasportatori, ad esempio, è il costruttore che fornisce la coppia di primo distacco a pieno carico, cioè il valore

di coppia necessario per far partire il nastro trasportatore (attrito statico) nelle condizioni di massimo carico e massima

accelerazione possible: M distacco = J*Nm

Subito dopo la partenza (primo distacco) è necessario un certo intervallo di tempo t per raggiungere la velocità di regime

prevista. In questa fase la coppia motrice dovrà vincere l’inerzia della masse movimentate e l’attrito volvente (non deve più

vincere l’inerzia dei rulli del nastro). Si parla quindi di forza e coppia accelerante:

Fa = (m*g) * a + (m*g)  con a = vt e v= velocità lineare a regime del nastro e attrito volvente del nastro sui rulli

Ma = Fa * d/2 con d=diametro rullo di traino

Quando il sistema raggiunge la velocita di rotazione prevista (a regime) la coppia motrice non deve più vincere l’inerzia del

sistema e di conseguenza la potenza richiesta al motore è generalmente più bassa di quella di spunto.

-F regime = (m*g) * con attrito volvente del nastro sui rulli

-M regime = Freg. * d/2 con d=diametro rullo di traino

M R NASTRO trasp.

m attrito

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 255

MOMENTO DI INERZIA DI PEZZI COMPLESSI

Tramite il menu “iProperties” è possibile ottenere una stima accurata delle proprietà meccaniche di un pezzo.

Alla sezione “fisiche” si può impostare il materiale e calcolare le proprietà principali (baricentro, momenti inerzia …).

Con FORMULA: Iy = ½ * m * r
2

= 0,5 * 12,331 * 0,1
2
=61655 kg mm

2
 da Inventor  61654 kg mm^2

L’esempio sottostante mostra una situazione pià complessa difficilmente risolvibile a mano.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 256

ARGANO PER SOLLEVAMENTO

Si consideri il meccanismo di sollevamento riportato in figura.

Il momento d'inerzia del motore è JN = 1 Kgm2.

Il cambio ha un rapporto di riduzione i=10:1 .

Il momento d'inerzia Jr del riduttore, riferito al motore, è pari a 0,2 Kgm2.

Il tamburo dell'argano ha un raggio ra = 0.3 m ed un momento d'inerzia Jtamb=3 Kgm2.

Il carico da sollevare ha massa mc= 1000 Kg.

Nel caso in esame, si può pensare che al momento d'inerzia proprio del tamburo si sovrapponga quello del peso che, per

l'ipotesi di anelasticità del cavo, può essere riportato sulla circonferenza del tamburo stesso (punto P di figura).

Il momento d'inerzia del peso è dunque: Jp = mc * r
2

= 1000 * 0,3^2= 90 Kg m2

Il momento complessivo a valle del riduttore (tamburo + peso) vale quindi:

Jc= Jtamb + Jp= 90 + 3 = 93 Kg m2

Se si suppone che il cambio sia privo di perdite, la potenza meccanica viene tutta trasmessa, quindi vale la relazione:

Pot= n*Cn = t* Ct dove

Ct = coppia trasmessa al tamburo dell'argano

Cn = coppia nominale del motore

Per un carico puramente inerziale, la coppia è legata alla velocità di rotazione dalla relazione:

Ct = Jc * c = Jc * dt/ dt con caccelerazione angolare del tamburo

Essendo il rapporto di riduzione i= n / t e Ct= Cnn /t = Cn*i sostituendo nella precedente:

Cni = Jc * dn /idt = Jc * 1/i* dn dt abbiamo

Cn = Jc / i
2

* dn dt = Jc / i
2

* n con naccelerazione angolare del motore

Si definisce JNC = Jc / i
2

momento d'inerzia del carico riportato al motore (momento riflesso)

Nel nostro caso: JNC = 93 / 10
2

= 0,93 Kgm2

Il momento di inerzia totale visto dal motore comprenderà inoltre quello proprio del motore JN e quello del riduttore Jr :

JNtot = JN + Jr + JNC =1+ 0,2+ 0,93 = 2,13 Kgm2

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 257

ARGANO PER SOLLEVAMENTO 2

Un motore asincrono deve sollevare / abbassare un carico tramite una fune che si avvolge su un tamburo di diametro D = 0.5 m.

Il carico si deve muovere alla velocità costante approssimativa v = 0.6 m/s.

La massa del carico è pari a 200 kg e la puleggia ha inerzia trascurabile.

Sono disponibili tre riduttori di velocità con riduzioni τ=1/50, 1/60, 1/80, rendimento diretto e retrogrado η=0.7 e inerzia

riduttore trascurabile. E’ richiesto di:

• scegliere il motore ed il riduttore più adatti;

• verificare quale sarà la velocità di regime;

• calcolare approssimativamente il tempo di avviamento per il caso di salita;

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 258

AZIONAMENTI MECCANICI: AGITATORE PER LIQUIDI

Un motore asincrono comanda, tramite un riduttore, un agitatore per liquidi di elevata densità.

Il riduttore ha un rendimento pari a 0,9.

L’agitatore ha una massa complessiva di 20Kg e può essere approssimato da un cilindro pieno di diametro 500mm.

E’ richiesta una coppia motrice di 1000 Nm alla velocità di 20 rpm per mescolare il fluido.

Il momento d'inerzia del motore è JN = 1 Kgm2.

Il momento d'inerzia Jr del riduttore, riferito al motore, è pari a 0,2 Kgm2.

Tempo di accelerazione da fermo pari 10 sec.

Il momento di inerzia dell’agitatore è dato da:

I agit. = 1/2*m*r
2
 = 0.5 * 20 * 0,5

2
 = 0,625 Kg m2

La velocità angolare a regime dell’agitatore è data:

 t = 6.28 *n° / 60 =6.28* 20/60= 2,1 rad/sec.

La potenza che deve essere trasmessa al carico a REGIME vale quindi:

Pt = t* Ct = 2,1* 1000 Nm = 2100 w

Not oil rendimento del riduttore si ricava la potenza nominale del motore:

Pn= Pt/2100 / 0.9= 2333 w.

Suppondendo di utilizzare un motore a induzione a due poli da 1420 rpm dobbiamo adottare il seguente rapporto di riduzione:

 i = 1420 / 20 = 71

200Kg

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 259

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 260

NASTRO TRASPORTATORE

Nella sua forma più semplice, un trasportatore è composto da una carpenteria che comprende il sostegno del nastro (piano di

scorrimento o rulli di supporto), un tamburo motore, che normalmente è il tamburo “di testa”, un rullo di rinvio, che

normalmente è il rullo “di coda” e un nastro trasportatore. Sistemi più complessi avranno componenti aggiuntivi come gruppi di

traino e di tensionamento, elementi di centraggio del nastro, deviatori di prodotto, accumulatori, sensori, ecc.

1 rullo di traino 6 rullo di controflessione 2 rullo di rinvio 7 rullo di tensionamento 3 piano di scorrimento 8 rullo di supporto (sul

lato di ritorno) 4 rullo di supporto 9 nastro trasportatore 5 controrullo 10 carpenteria (non indicata)

Nastro con piano di scorrimento

I vantaggi di un nastro supportato da un piano di scorrimento sono principalmente la maggiore stabilità dei prodotti trasportati e

la limitata influenza sul centraggio del nastro – un vantaggio che distingue questa soluzione da quella che prevede l'utilizzo di

rulli di supporto. Selezionando in maniera corretta il materiale del lato di scorrimento del nastro e il piano di scorrimento stesso,

è possibile variare in nostro favore il coefficiente di attrito, la rumorosità e la vita utile del nastro.

I materiali consigliati per il piano di scorrimento sono:

- Lamiera di acciaio decapato (lamiera di acciaio disincrostata chimicamente)

 -Lamiera di acciaio inossidabile (utilizzata in particolare nel settore alimentare)

- Plastiche dure (come la resina fenolica, ecc.) utilizzate principalmente come copertura di pannelli in truciolato o compensato

- Fogli laminati di legno duro (faggio, quercia)

L’attrito tra il piano di scorrimento e il nastro viene notevolmente influenzato dal tipo di materiale e dalla finitura superficiale

del piano di scorrimento, dall’umidità, dalla polvere, dalla sporcizia, ecc.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 261

Nastro con rulli di scorrimento

In presenza di trasportatori lunghi e carichi grandi/pesanti si utilizzano rulli di supporto in sostituzione del piano di scorrimento.

I rulli di supporto riducono la perdita per attrito, la forza periferica e la potenza richiesta per il traino.

I rulli maggiormente utilizzati sono realizzati da tubi di precisione in acciaio supportati da cuscinetti a rulli.

La distanza tra i rulli di supporto deve essere inferiore a metà della lunghezza delle unità di carico trasportate lG, in modo che i

prodotti trasportati appoggino sempre su almeno due rulli.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 262

AZIONAMENTO PER NASTRO TRASPORTATORE

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 263

Si deve dimensionare un motore asincrono trifase 400V che gestisce un nastro trasportatore a rulli.

Lunghezza nastro 30 m

Massa nastro /m 5 Kg

Massa nastro 300 Kg 2x lunghezza

Velocità lineare nastro 1,5 m/s

Tempo di accelerazione 5 s da fermo

Massa trasportata /m 30 Kg

Massa tot. trasportata 900 Kg

Massa totale movimentata 1200 comprensiva di nastro

Diametro puleggia 0,2 m

Attrito volvente 0,07

Attrito statico 0,09

Md coppia primo distacco 140 Nm → dal costruttore del nastro

Rendimento riduttore 0,98

Motore 4 poli trifase 1475 rpm

Capacità sovraccarico 150 % per 30s

Tensione alimentazione 400 V trifase

Fattore di potenza 0,85

motore 154,4 rad/s

Rendimento inverter 0,98

Capacità sovraccarico 150 % per 60s

RAPPORTO DI TRASMISSIONE DEL RIDUTTORE

pvelocità puleggia 15 rad/s v nastro =  * D/2

i = rapporto trasmissione 10,3 motore / p

COPPIA DI PRIMO DISTACCO

Md 140,0 Nm → dal costruttore del nastro

Pd 2100 W potenza primo distacco

COPPIA ACCELERANTE (x vincere inerzia del carico e attrito volvente dopo il distacco)

a = v / t = 1,5/5 0,3 m/s2 accelerazione lineare nastro

Fa 1184 N forza accelerante

Ma 118 Nm coppia accelerante

Pa 1812 W potenza accelerante

COPPIA A REGIME (volvente)

a 0 m/s2 omega costante

Fr 824 N forza a regime

Mr 82 Nm coppia a regime

Pr 1261 W potenza a regime

La coppia accelerante è presente finché il motore non raggiunge la velocità massima.

La potenza accelerante si trova con la coppia accelerante alla massima velocità

Un motore elettrico a induzione in genere ha una capacità di sovraccarico del 150% per 30s

Pa con sovraccarico 150% 1208 W sovraccarico per 5s

Si puo' quindi prendere un motore elettrico da 1,5 kW

Ia 3,1 A corrente all’avvio assorbita dal motore

La corrente di primo distacco invece
vale

Id 3,6 A

Il convertitore di frequenza può sopportare un sovraccarico del 150% per 60s

I nominale convertitore 2 A

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 264

⌂

SISTEMI DI REGOLAZIONE

Un sistema di REGOLAZIONE non prevede l’utilizzo di sensori ma si base sulle leggi fisiche che governano il sistema.

Ad esempio per mantenere una certa temperatura dell’acqua in un recipiente è possible far ricorso alle leggi della termotecnica

per calcolare la dispersioni termiche dell’involucro e quindi la potenza termica che deve essere fornita tramite un elemento

riscaldante.

Applicando correttamente le leggi della fisica si può ottenere il risultato richiesto senza un controllo continuo del sistema.

Nel caso di presenza di disturbi esterni (non adiabaticità del recipiente, prelievo di acqua, ecc.) il risultato non può essere

raggiunto senza la presenza di opportune sensori che misurano in tempo reale la grandezza da controllare.

SISTEMA DI RISCALDAMENTO RESISTIVO

Progettare un sistema di REGOLAZIONE della temperatura dell’acqua in un recipiente adiabatico da 10 litri.

La temperatura dell’acqua deve essere portata da 20°C a 50°C con una resistenza termica da 115 watt quando si preme un

pulsante di accensione. Il sistema NON prevede l’utilizzo di sensori di temperatura e per questo motivo si parla di REGOLAZIONE

e non di CONTROLLO.

Se si applicano correttamente le leggi della fisica alla base del processo di riscaldamento dell’acqua si può ottenere il risultato

richiesto. Nel caso di presenza di disturbi esterni (non adiabaticità, prelievo acqua prima del termine fase di riscaldamento, ecc.)

il risultato non può essere raggiunto senza la presenza di sensori.

Leggi fisiche coinvolte:

1- Energia termica fornita all’acqua: Q= m*Ct* (Tf-Ti) [Joule]

2- Potenza termica fornita dall’elemento riscaldante: Pot.= Q / t [w=J/s]

Ricavando il calore fornito dalla 2° equazione e sostituendolo nella prima si ottiene il tempo “t” necessario ad ottenere il

risultato richiesto.

Il microcontrollore dovrà quindi attivare l’elemento riscaldante per il tempo calcolato.

t = m*Ct* (Tf-Ti) / Pot. = 10 * 4186* (50-20) / 115 = 10920 s = 95 minuti

Per valutare il tempo trascorso in Arduino si deve impiegare la funzione “millis()” che ritorna il numero di millisecondi trascorsi

dall’accensione.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 265

long t0;
int tempoAttivazione= 10*1000; // secondi
bool flagAttivo = false; // flag per sapere se è attivo riscaldamento

void setup()
{
 pinMode(2, OUTPUT); // TIP120
 pinMode(5, OUTPUT); // LED
 pinMode(4, INPUT); // START
 Serial.begin(9600);
}

void loop()
{
 int statoStart= digitalRead(4); // STATO BOTTONE START

 if (statoStart==HIGH) {
 Serial.println("Attivazione");
 flagAttivo= true;
 t0= millis(); // ISTANTE ATTIVAZIONE
 digitalWrite(2, HIGH);
 digitalWrite(5, HIGH);
 }
 // CONTROLLO SE è PASSATO IL TEMPO DI ACCENSIONE PREVISTO
 if (((millis() - t0) > tempoAttivazione) && (flagAttivo== true)) {
 Serial.println("Fine riscaldamento");
 digitalWrite(2, LOW);
 digitalWrite(5, LOW);
 flagAttivo= false;

 }

 delay(200);

}

Attenzione a non mettere i
pin del pulsante allineati in
verticale alla resistenza!

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 266

REGOLAZIONE DEL NUMERO DI GIRI DI MOTORE C.C. AD ALTA VELOCITA’

La fotografia mostra un motore CC da 12 V a 6000 giri/minute la cui velocità viene regolata tramite un transistor di potenza

TIP120 a sua volta controllato con un segnale PWM da Arduino.

Lo scopo del circuito è quello di regolare la tensione dei alimentazione del motore per ottenre il il numero di giri a vuoto

desiderato.

Per rilevare la velciotà del motore si utilizza il modulo Arduino LM393 dotato di emettiore e ricevitore IR a forcella.

Il pezzo verde (supporto del modulo) è stato disegnato in 3D e poi stampato in 3D.

TIP 120

MASSA

12V

DC 775

LM393

SUPPORTO

12V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 267

MODULO IR LM393

Il modulo ha due colonne verticali con un LED IR su una colonna e un fototransistor sull'altra.

Ogni volta che il percorso tra il LED IR e il fototransistor viene interrotto, il pin D0 va alto (05V).

Questo modulo viene chiamato impropriamente “sensore di velocità LM393”.

LM393 è in realtà un comparatore e non un sensore. Lo schema del modulo è il seguente:

Senza ostruzioni tra il LED IR e il fototransistor, la tensione tra i terminali positivo e negativo del comparatore è uguale.

Quando il fototransistor è bloccato, assorbirà una tensione maggiore, portando il terminale positivo del comparatore ad una

tensione maggiore del terminale negativo.

Pertanto, una tensione positiva, pari a VCC, sarà disponibile al terminale D0.

ricevitore

emettitore

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 268

La figura sottostante mostra una tipica apllicazione del modulo per rilevare il numero di giri del motore di un drone.

Un disco forato (20 fori) è fissato sull’albero del motore CC.

Il modulo LM393 è collegato al motore in modo che il disco possa ruotare liberamente tra le forcelle del snesore.

Ogni volta che il disco interrompe il raggio IR del LED il fototransistor rileva l’inerruzione e il pin D0 va alto (05V).

ricevito
re

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 269

DISEGNARE IL SUPPORTO PER IL MODULO IR LM393 E IL DISCO FORATO (ENCODER)

NOTA:

Per rilveare velocità elevate del motore è necessario ridurre il numero di fori presenti nell’encoder.

Con soli 3 fori si rilevano velocità oltre I 6000 diri/minuto.

Domanda: quale svantaggio si ha riducendo il numero di fori sul disco?

LM393
ENCODER

SUPPORTO
 ? SUPPORTO

DC 775 – 12V

NEMA 17

3 FORI

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 270

ESERCITAZIONE

Ricavare dalla fotografia del circuito con il motore collegato lo schema elettrico del sistema di regolazione della velocità del

motore e replicarlo su Thinkercad.

Simulare il modulo LM393 con un generatore di funzioni d’onda quadra 0-5V (regolare la frequenza a bassi valori).

Scrivere Il programma Arduino che conta gli impulsi che arirvano dal modulo LM393 (simulato con generatore funzioni d’onda).

Sapendo che il disco collegato all’albero presenta 3 fori calcolare e mostrare su seriale e/o display LCD 16x2 I2C il numero di giri

del motore.

NOTA:

Contare gli impulsi solo quando viene rilevato il passaggio da 0V a 5V (fronte di salita) e NON ogni volta che si rilevano 5V!

Il tempo di campionamento deve essere compatibile con il numero di giri del motore.

Ad esempio:

con 6000 giri/minuto

 100 giri /secondo

 x 3 fori

 300 impulsi /secondo

 periodo T= 1/300= 3ms

 campionamento ogni 1ms per non perdere impulsi.

Passaggio da 0 a 5V indica che è passato un foro tra le forcelle

T

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 271

SCHEMA THINKERCAD

Simulare il modulo LM393 con un generatore di funzioni d’onda quadra 0-5V.

Mantenere la frequanza bassa per non appesantire la simulazione nel cloud.

Visulaizzare sull’oscilloscopio il treno di impulse del generatore d’onda.

Prevedere la presenza del diodo di protezione del transitor.

CODICE
// PIN
int transistorPin = 3;
int sensorePin = A0;

//volatile -->
//salvata in RAM perchè modificabile in + thread
volatile long counter=0;
volatile long counter_tot=0;

// stato del sensore
int nfori= 3;
int stato=0;
int stato_prec=1;

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 272

int stop_read= 0;
int delta_t= 1000;
long t;
// seriale
int incomingByte = 0; // for incoming serial data
int input = 0;

void setup() {
 pinMode(A0,INPUT);
 pinMode(transistorPin, OUTPUT);
 Serial.begin(9600);
 t= millis();
 analogWrite(transistorPin, 255/2);
}

void loop() {
 if (Serial.available() > 0) {
 incomingByte = Serial.read(); // leggo carattere
 input = incomingByte - 48; //converto codice ASCII carattere in numero 1,2,3

 switch (input) {
 case 0:
 analogWrite(transistorPin, 0);
 break;
 case 1:
 analogWrite(transistorPin, 255/3);
 break;
 case 2:
 analogWrite(transistorPin, 255/2);
 break;
 case 3:
 analogWrite(transistorPin, 255);
 break;
 }
 input=0;
 }

 // stato sensore
 stato= digitalRead(sensorePin);
 // se è cambiato rispetto a prima
 if (stato!=stato_prec && stop_read==0) {
 // se passo da 0-->5
 if (stato==1) counter = counter+ 1;
 stato_prec= stato; // aggiorno stato_prec
 }

 // durante la stampa non leggo impulsi per non sfalsare calcolo)
 if ((millis() - t)>=delta_t) {
 stop_read= 1;
 counter_tot= counter_tot + counter;
 // rpm con delta_t= 1 sec
 float rpm= counter *20.0; //counter * 60/nfori
 Serial.print("rpm "); Serial.println(rpm);
 counter= 0;
 t= millis();
 stop_read= 0;
 }

//delayMicroseconds(10);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 273

SCHEMA THINKERCAD CON UTILIZZO DEGLI INTERRUPT

// PIN
int transistorPin = 3;
// L'interrupt 0 di Arduino è associato al pin digitale 2
int sensorePin = 2; // --> interrupt

//volatile --> salvata in RAM perchè modificabile in un interrupt
volatile long counter=0;
volatile long counter_tot=0;

// stato del sensore
int nfori= 3;
int delta_t= 1000;
long t;

// seriale
int incomingByte = 0; // for incoming serial data
int input = 0;

void setup() {
 attachInterrupt(0,countpulse,RISING); //interrupt PIN 2

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 274

 pinMode(A0,INPUT);
 pinMode(transistorPin, OUTPUT);
 Serial.begin(9600);
 analogWrite(transistorPin, 255);
 t= millis();
}

void loop() {
 if (Serial.available() > 0) {
 incomingByte = Serial.read(); // leggo carattere
 input = incomingByte - 48; //converto codice ASCII carattere in numero 1,2,3

 switch (input) {
 case 0:
 analogWrite(transistorPin, 0);
 break;
 case 1:
 analogWrite(transistorPin, 255/3);
 break;
 case 2:
 analogWrite(transistorPin, 255/2);
 break;
 case 3:
 analogWrite(transistorPin, 255);
 break;
 }
 input=0;
 }

 // durante la stampa non leggo impulsi per non sfalsare calcolo)
 if ((millis() - t)>=delta_t) {
 // rpm con delta_t= 1 sec
 float rpm= counter *20.0; //counter * 60/nfori
 Serial.print("rpm "); Serial.println(rpm);
 counter= 0;
 t= millis();
 }
 //delayMicroseconds(10);
}

void countpulse(){
 counter++;
}

Molti dei sensori per hobby a basso costo hanno comparatori basati sull'LM393 senza alcun feedback di isteresi e non è

raro riscontrare interruzioni multiple/problemi di rumore con questi moduli comparatori LM393 di base.

Quattro suggerimenti da provare per migliorare il funzionamento del modulo:

 routine di antirimbalzo nell’interrupt

 stabilizzare il punto di trigger con un condensatore di C=0. 1µF tra GND e l'ingresso negativo del comparatore.

 aggiungere un filtro passa-basso all'uscita D0 del modulo R=1K, C=0.01µF (100nF).

 Alimentare il modulo a 3.3V al posto di 5V

Anche solo un condensatore C= 0,01 µF (100 nF) tra uscita D0 e GND del modulo migliora le cose.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 275

SCHEMA THINKERCAD CON LCD 16X2 E CON UTILIZZO DEGLI INTERRUPT

CODICE

#include <Adafruit_LiquidCrystal.h>
Adafruit_LiquidCrystal lcd_1(0);

// PIN
int transistorPin = 3;
// L'interrupt 0 di Arduino è associato al pin digitale 2
int sensorePin = 2; // --> interrupt

//volatile --> salvata in RAM perchè modificabile in un interrupt
volatile long counter=0;
volatile long counter_tot=0;

// stato del sensore
int nfori= 3;
int delta_t= 1000;
long t;

// seriale
int incomingByte = 0; // for incoming serial data
int input = 0;

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 276

void setup() {
 attachInterrupt(0,countpulse,RISING); //interrupt PIN 2
 pinMode(A0,INPUT);
 pinMode(transistorPin, OUTPUT);
 Serial.begin(9600);

 lcd_1.begin(16, 2);
 lcd_1.setCursor(0, 0);
 lcd_1.print("RPM");
 lcd_1.setCursor(0, 1);
 lcd_1.print("giri");

 analogWrite(transistorPin, 255);
 t= millis();
}

void loop() {
 if (Serial.available() > 0) {
 incomingByte = Serial.read(); // leggo carattere
 input = incomingByte - 48; //converto codice ASCII carattere in numero 1,2,3

 switch (input) {
 case 0:
 analogWrite(transistorPin, 0);
 break;
 case 1:
 analogWrite(transistorPin, 255/3);
 break;
 case 2:
 analogWrite(transistorPin, 255/2);
 break;
 case 3:
 analogWrite(transistorPin, 255);
 break;
 }
 input=0;
 }

 // durante la stampa non leggo impulsi per non sfalsare calcolo)
 if ((millis() - t)>=delta_t) {
 // rpm con delta_t= 1 sec
 float rpm= counter *20.0; //counter * 60/nfori
 Serial.print("rpm "); Serial.println(rpm);

 lcd_1.setCursor(0, 1); lcd_1.print(rpm);

 counter= 0;
 t= millis();
 }
 //delayMicroseconds(10);
}

void countpulse(){
 counter++;
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 277

⌂

SISTEMI DI CONTROLLO

Un sistema di REGOLAZIONE non prevede l’utilizzo di sensori ma si base sulle leggi fisiche che governano il sistema.

Ad esempio per mantenere una certa temperatura dell’acqua in un recipiente è possible far ricorso alle leggi della termotecnica

per calcolare la dispersioni termiche dell’involucro e quindi la potenza termica che deve essere fornita tramite un elemento

riscaldante.

Applicando correttamente le leggi della fisica si può ottenere il risultato richiesto senza un controllo continuo del sistema.

Nel caso di presenza di disturbi esterni (non adiabaticità del recipiente, prelievo di acqua, ecc.) il risultato non può essere

raggiunto senza la presenza di opportune sensori che misurano in tempo reale la grandezza da controllare.

Sulla base della misura si interviene poi degli attuatori per portare la grandezza controllata al livello desiderato (retroazione).

In questa situazione si parla quindi di sistema di CONTROLLO AD ANELLO CHIUSO.

L’immagine seguente mostra lo schema di massima di un generico sistema di controllo.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 278

SCHEMA A BLOCCHI DI SISTEMA DI CONTROLLO DI TEMPERATURA

La figura sottostante mostra lo schema di un sistema di controllo della temperatura dove abbiamo:

 Tref = temperatura di riferimento (“set-point”) da mantenere nel sistema controllato (es. forno)

 PID / ON-OFF = tipologia di controllo attuata (proporzionale-integrale-derivativo, acceso-spento)

 DAC = convertitore da digitale ad analogico (converte un numero in una tensione  8bit  0-255)

 Amplificatore = amplifica il segnale in uscita dal DAC (es. Transistor BJT)

 Attuatore = elemento riscaldante che serve ad aumentare la temperature del sistema controllato

 Sensore = termistore, termoresistenza, termocoppia ecc.

 ADC = convenrtitore da analogico (temperatura/tensione) a digitale (numero digitale  10bit  0-1024)

microcontrollore

retroazione
negativa

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 279

 ESEMPIO CONTROLLO PID CON TRANSISTOR

Il microcontrollore e l’alimentatore di potenza devono sempre avere la massa in comune.

Il sensore e la base del transistor vengono alimentati dal microcontrollore.

L’attuatore è alimentato dal generatore di potenza e collegato al collettore del transistor.

DAC (PWM 8bit)

ADC 10bit

ELEMENTO RISCALDANTE
RESISTIVO

SENSORE T(°C)
TRANSISTOR

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 280

ESEMPIO CONTROLLO ON-OFF CON RELE’

Il microcontrollore e l’alimentatore di potenza devono sempre avere la massa in comune.

Il sensore e la bobina del rele’ vengono alimentati dal microcontrollore.

L’attuatore è alimentato dal generatore di potenza e collegato al collettore del transistor.

ADC 10bit

ELEMENTO RISCALDANTE
RESISTIVO

DIGITALE on-off

comune

contatto
N.A

SENSORE T(°C)

RELE’

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 281

GENERARE SEGNALI ANALOGICI (DAC) CON ARDUINO

I pin digitali si dividono in base al supporto o meno della funzione PWM (pulse wide modulation).

I pin che hanno la PWM sono: 3,5,6,9,10,11.

Con un pin PWM è possibile generare in uscita un segnale analogico da 0-5V con una risoluzione di 8 bit (5/255 volt =͌0,02V) .

Un segnale PWM è in termini molto semplicistici, un onda quadra 0-5V (ad alta frequenza) con delle durate prestabilite per la

parta alta (5V).

Ciò permette di simulare un valore analogico di tensione compreso tra 0-5V con uno digitale con la maggior parte degli attuatori

(transistor, relè, motori CC ...).

 5V

 0V

 0,25*5 V

 0,5 V

 0,75*5 V

I segnali analogici in uscita sono di fondamentale importanza per poter effettaure sistemi di controllo evoluti come ad
esempio il PID.
Tramite un segnale analogico che varia da 0 a 5V si può regolare la potenza assorbita da un attuatore (motori,
elementi riscadanti, generatori di forza ecc.) e di conseguenza l’effetto sul sistema controllato.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 282

ESERCIZIO: VARIARE LA LUMINOSITA’ DI UN DIODO LED

Tramite la PWM si può variare la corrente che scorre in un diodo LED (variando la tensione sulla resistenza) e di conseguenza la

sua luminosità. Questa tecnica viene usata nelle lampadine in CC trimmerabili.

CODICE:

int ledPin = 9; // LED su Pin 9

void setup(){
 pinMode(ledPin, OUTPUT);
 Serial.begin(9600);
}

void loop(){
 // aumento luminosità da 0 al massimo
 for(int dimValue = 0; dimValue <= 255; dimValue = dimValue + 5){
 analogWrite(ledPin, dimValue);
 Serial.println(dimValue);
 delay(30);
 }
// diminuisco luminosità dal massimo a 0
 for(int dimValue = 255; dimValue >= 0; dimValue = dimValue - 5){
 analogWrite(ledPin, dimValue);
 Serial.println(dimValue);
 delay(30);
 }
}

5ms

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 283

COME VARIARE LA VELOCITA’ DI UN MOTORE C.C. MANTENENDO ALTA LA COPPIA MOTRICE

Tramite la PWM si può variare la corrente che scorre nel motore e di conseguenza la sua velocità.

Poichè la corrente assorbita dal motore è superiore ai 30-40 mA fornibili da Arduino è necessario utilizzare un transistor che

viene comandato da Arduino tramite un segnale PWM.

CODICE

#define DC_MOTOR_PIN 9

void setup() {
 pinMode(DC_MOTOR_PIN, OUTPUT);
}

void loop() {
 for(int i = 0; i < 255; i=i+5){
 analogWrite(DC_MOTOR_PIN, i);
 delay(50);
 }

 for(int i = 255; i > 0; i=i-5){
 analogWrite(DC_MOTOR_PIN, i);
 delay(50);
 }

}

2.2K
Diodo di protezione
per il transistor

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 284

SISTEMA DI CONTROLLO TEMPERATURA E UMIDITA’

Si vuole controllare la temperatura e l’umidità in un locale in modo da mantenerla nelle condizioni di benessere (20°C +-2°C e

umidità relativa del 50% +-10%.

Utilizzare come sensore un DHT22 e simulare il sistema di riscaldamento e deumidificazione (si ipotizzi presenza di persone che

aumentano sempre l’umidità del locale) tramite dei led comandato da rele’.

Prendendo spunto dal programma allegato integrarlo per adempiere alle richieste.

simulabile su “wokwi.com”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 285

CODICE

#include "DHT.h"

const int DHTPIN=2;
const int pinLed1=6;
const int pinLed2=5;

DHT dht(DHTPIN, DHT22); // DHT 22 (AM2302), AM2321

int Tsp= 20; // temperatura set point
int Hsp= 50; // umidità set point

void setup() {
 Serial.begin(115200);
 Serial.println(F("DHT22 example!"));

 pinMode(DHTPIN, INPUT);
 pinMode(pinLed1, OUTPUT);
 pinMode(pinLed2, OUTPUT);

 dht.begin();
}

void loop() {
 float temperature = dht.readTemperature();
 float humidity = dht.readHumidity();

 // Check if any reads failed and exit early (to try again).
 if (isnan(temperature) || isnan(humidity)) {
 Serial.println(F("Failed to read from DHT sensor!"));
 return;
 }

 Serial.print(F("Humidity: "));
 Serial.print(humidity);
 Serial.print(F("% Temperature: "));
 Serial.print(temperature);
 Serial.println(F("°C "));

 digitalWrite(pinLed2, HIGH);

 if (temperature>=20) {digitalWrite(pinLed1, LOW);}
 else {digitalWrite(pinLed1, HIGH);}

 if (humidity>=50) {digitalWrite(pinLed2, LOW);}
 else {digitalWrite(pinLed2, HIGH);}

 // Wait a few seconds between measurements.
 delay(2000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 286

SISTEMA DI CONTROLLO ON-OFF

Il controllo ON-OFF è un controllo ad anello chiuso nel quale l’azione del controllore è discontinua.

Il controllore decide quando intervenire in base alla misura dello scostamento tra valore atteso e valore reale dell’uscita come

nel controllo continuo, con la differenza che l’aggiustamento non viene applicato con continuità bensì quando lo scostamento

oltrepassa una soglia predeterminata.

Prendiamo come esempio il controllo ON-OFF di temperatura per la climatizzazione di un ambiente, dove lo scopo del controllo

è quello di mantenere il livello di temperatura di una stanza entro margini prestabiliti rappresentati da una soglia inferiore Tinf e

una superiore Tsup.

Il valore della variabile in uscita T(t) viene confrontato con il valore desiderato Trif.

La differenza tra i due valori (errore “e”) viene utilizzata per pilotare il controllore che interviene in modalità “tutto o niente”

comandando con la sua uscita l’attivazione (ON) o la disattivazione (OFF) del bruciatore della caldaia.

Altro esempio è la cisterna d’acqua, dove lo scopo è mantenere il livello del liquido entro margini prefissati.

Quando il livello risulta inferiore alla soglia minima, il sistema interviene comandando l’apertura di un’elettrovalvola (rubinetto

controllabile elettricamente) che rimane aperta (stato “ON”) fin quando il livello sale e supera la soglia massima.

L’attuatore viene accesso e spento (mediante relè o transistor) sulla base del valore misurato della grandezza controllata con

una oscillazione definita “isteresi” (es. +-1°C).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 287

SISTEMA DI CONTROLLO PID (PROPORZIONALE – INTEGRALE – DERIVATIVO)

E’ un sistema in retroazione negativa ampiamente impiegato nei sistemi di controllo automatico.

È molto comune nell'industria, in particolare nella versione PI (senza azione derivativa).

Grazie a un input che determina il valore attuale, è in grado di reagire a un eventuale errore positivo o negativo tendendo verso

il valore 0.

Il controllore acquisisce in ingresso un valore da un processo e lo confronta con un valore di riferimento.

La differenza, il cosiddetto segnale di errore, viene quindi usata per determinare il valore della variabile di uscita del controllore,

che è la variabile manipolabile del processo.

Il PID regola l'uscita in base a:

 il valore del segnale di errore (azione proporzionale  coefficiente Kp);

 i valori passati del segnale di errore (azione integrale  coefficiente Ki);

 quanto velocemente il segnale di errore varia nel tempo (azione derivativa  coefficiente Kd).

I controllori PID sono relativamente semplici da comprendere, installare e tarare, al confronto con più complessi algoritmi di

controllo basati sulla teoria del controllo ottimo e del controllo robusto.

La taratura dei parametri avviene di solito attraverso semplici regole empiriche, come i metodi di Ziegler-Nichols, che risultano

in controllori stabilizzanti di buone prestazioni per la maggior parte dei processi.

Molto spesso l'azione derivativa viene rimossa, risultando nel comunissimo controllore PI.

I controllori PID sono spesso sufficienti a controllare processi industriali anche complessi, ma la loro semplicità risulta in una

serie di limiti che è bene tener presente:

 Non sono in grado di adattarsi a cambiamenti nei parametri del processo;

 Non sono stabili, a causa della presenza dell'azione integrale;

 Alcune regole di taratura, come quelle di Ziegler-Nichols, reagiscono male in alcune condizioni;

 Sono intrinsecamente monovariabili, non possono quindi essere usati in sistemi inerentemente multi variabili

Segnale controllo = Kp * e(t) + Ki * ʃ e(t) dt + Kd* de(t)/dt (in genere una tensione …)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 288

La scelta dei parametri Kp, Ki e Kd è fondamentale per ottenere il risultato desiderato.

Valore non corretti possono rendere il sistema instabile.

IMPLEMENTAZIONE NUMERICA PID

Integrale dell’errore  somma aree  ∑ e*t

Derivata dell’errore  variazione dell’errore nell’intervallo di tempo  e t

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 289

INTEGRAZIONE NUMERICA DELL’ERRORE

 tempo

Sommando le aree ottenuto col prodotto e*t andiamo ad approssimare l’integrale della curva errore.

ʃ e(t) dt = ∑ e*t più il t è piccolo e più è preciso il calcolo

DERIVAZIONE NUMERICA DELL’ERRORE

La derivata puntale di una funzione si può approssimare con il suo rapporto incrementale fissando un opportuno t

e’(t) = e/t più il t è piccolo e più è preciso il calcolo

e

t

t

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 290

REGOLE DI ZIEGLER-NICHOLS

Il metodo di Ziegler-Nichols, risalente al 1942, è tra i più usati ed è apprezzato per la sua semplicità, per il fatto di non richiedere

un modello matematico del processo e per le prestazioni che riesce a produrre. Serve a trovare il cosiddetto "guadagno critico

Ku", dal quale si deriveranno gli altri parametri del PID:

 Il processo viene fatto controllare da un controllore esclusivamente proporzionale (Ki e Kd vengono impostati a zero);

 Il guadagno Kp del controllore proporzionale viene gradualmente aumentato;

 Il guadagno critico Ku è il valore del guadagno per cui la variabile controllata presenta oscillazioni sostenute, cioè che

non spariscono dopo un transitorio (questa è una misura dell'effetto dei ritardi e della dinamica del processo);

 Si registra il periodo critico Pu delle oscillazioni sostenute e con la tabella allegata si determinano le costanti per il

controllore P, PI o PID;

ESEMPIO CALCOLO COSTANTI PID

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 291

CONTROLLO DI TEMPERATURA ON-OFF CON SENSORE TMP36

Progettare un sistema di CONTROLLO della temperatura dell’acqua in un recipiente.

L’acqua deve essere mantenuta alla temperatura di 50°C con una tolleranza di +-1°C.

Si utilizzi come sensore di temperatura il TMP36.

Si adotti un semplice sistema di regolazione ON-OFF dell’elemento riscaldante con tempo di campionamento (rilevazione) della

temperatura di 30 sec.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 292

CODICE

long t0;
long tempoPrint=1000; // tempo frequenza stampa a video
int statoRiscaldamento = 0; // 0=spento; 1=attivo; 2=mantengo
float tempSetPoint= 50.0; // SET POINT +-1°C
float volt;
float temperatura= 0;

void setup()
{
 pinMode(2, OUTPUT); // TIP120
 pinMode(5, OUTPUT); // LED
 pinMode(A5, INPUT); // TMP36
 Serial.begin(9600);
 t0= millis();
}

void loop()
{
 volt = analogRead(A5) * 5.0/1024.0; // usare i decimali nella divisione!
 temperatura = 100 * volt – 50;

 if (temperatura <= 49.0) {
 statoRiscaldamento= 1; // attivo
 digitalWrite(2, HIGH);
 digitalWrite(5, HIGH);
 }
 else if (celsius> 49.0 && celsius< 51.0) {
 statoRiscaldamento= 2; / /mantengo
 }
 else {
 statoRiscaldamento= 0; // spengo
 digitalWrite(2, LOW);
 digitalWrite(5, LOW);
 }

 //stampa stato processo
 if ((millis() - t0) >= tempoPrint) {
 t0= millis();
 Serial.print("T="); Serial.println(celsius);
 switch (statoRiscaldamento) {
 case 1: Serial.println("Attivo");
 break;
 case 2: Serial.println("Mantengo");
 break;
 case 0: Serial.println("Spento");
 break;
 }
 }

 delay(30000); // 30 sec
}

Al posto dello “switch” si può usare

If

Else if

Else if

….

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 293

CONTROLLO LIVELLO ON-OFF CON SENSORE ULTRASUONI

Si vuole avviare una pompa di riempimento quando il livello dell’acqua scende sotto un valore minimo (es. 100cm).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 294

CODICE

int motorPin=8;
int cm = 0;
int statoM=0; //0 spento; 1 acceso
int livello=100;
int errore=2;

long readUltrasonicDistance(int triggerPin, int echoPin)
{
 pinMode(triggerPin, OUTPUT); // Clear the trigger
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 // Sets the trigger pin to HIGH state for 10 microseconds
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 pinMode(echoPin, INPUT);
 // Reads the echo pin, and returns the sound wave travel time in microseconds
 return pulseIn(echoPin, HIGH);
}

void setup()
{
 pinMode(motorPin, OUTPUT); // Clear the trigger
 Serial.begin(9600);
}

void loop()
{
 // measure the ping time in cm
 cm = 0.01723 * readUltrasonicDistance(7, 7);
 Serial.print(cm);
 Serial.println("cm");

 if (cm<(100-errore/2)) {
 digitalWrite(8,HIGH);
 Serial.println("Attivo motore");
 statoM=1;
 }
 else if (cm>=(100+errore/2)) {
 digitalWrite(8,LOW);
 Serial.println("Spengo motore");
 statoM=0;
 }
 else {

 if (statoM=0) {
 Serial.println("spento");
 }
 else {
 Serial.println("acceso");
 }

 }

 delay(100); // Wait for 100 millisecond(s)
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 295

CONTROLLO LIVELLO ON-OFF CON SENSORE ULTRASUONI 2

Si vuole avviare una pompa di riempimento quando il livello dell’acqua scende sotto un valore minimo (es. 100cm).
Si utilizzi il sensore ad ultrasuoni per Arduino HC-SR04 dotato di due distinti pin per “trigger” e “echo”.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 296

CONTROLLO DI LIVELLO CON SENSORE ANALOGICO

Si vuole mantenere il livello di acqua in un serbatoio a 500mm con una tolleranza di +/-10mm.

Si ha disposizione

-una pompa con motore CC a 24V (I=350mA)

-un transistor di potenza TIP120 (hfe=1000, Vbe=0,7v)

-un sensore di livello analogico in tensione con la seguente caratteristica lineare V (volt) - distanza [mm]:

Utilizzare un LCD a 7 segmenti per mostrare la temperatura attuale e usare la seriale per indicare lo stato attuale della pompa

(accesa, spenta, mantengo accesa, mantengo spenta).

Il sensore può essere simulato con un generatore di tensione continua 0-30V e un partitore di tensione 1k-5k che riduce i 30V

max. a 5V max. (30/5=6 volte) in ingresso ad Arduino.

EX: risolvere lo stesso problema utilizzando un sensore ad ultrasuoni

Curva del sensore:

distanza = 39*(volt-1) /9 + 1 [mm]

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 297

CODICE

#include "Adafruit_LEDBackpack.h"
float h0=520.0;
float hsp=500.0;
float delta=20.0;
float volt;
float distanza;
float altezza;
float hmax = hsp+delta/2.0;
float hmin = hsp-delta/2.0;
int stato_pompa=0; // 0 off; 1 on

Adafruit_7segment led_display1 = Adafruit_7segment();

void setup()
{
 led_display1.begin(112);
 pinMode(A1, INPUT);
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 // Convert from 0-1023 range to 0-30V range
 volt= analogRead(A1) * 5.0 / 1023.0 * 6; // moltiplico per 6 per ottenere 30V
 // Convert voltage to distance
 distanza= 39.0/9.0*(volt-1.0)+1.0;
 // Get heigh level
 altezza= h0-distanza;

 led_display1.println(altezza);
 led_display1.writeDisplay();

 Serial.println(altezza);

 if (altezza >= hmax) {
 digitalWrite(3, LOW);
 digitalWrite(2, LOW);
 stato_pompa= 0;
 Serial.println("Spento");
 }
 else if (altezza <= hmin) {
 digitalWrite(3, HIGH);
 digitalWrite(2, HIGH);
 stato_pompa= 1;
 Serial.println("Acceso");
 }
 else {
 if (stato_pompa== 1) {
 Serial.println("Mantengo Acceso");
 }
 else {
 Serial.println("Mantengo Spento");
 }
 }

 delay(2000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 298

CONTROLLO LIVELLO CON SENSORE ANALOGICO NON LINEARE

Realizzare un sistema di controllo ON-OFF di livello che mantenga il livello dell’acqua in un serbatoio a 32cm.

Il sensore è montato ad una quota di 60cm dal fondo. La tolleranza del sistema è di +-2cm.

Il sensore di livello analogico assegnato presenta la seguente curva Distanza [cm] –Tensione [volt]

Dalla curva del sensore si ricava la distanza in funzione della tensione fornita dal sensore:

V= 0,3*d -2  d= (V+2)/0,3 [cm]

La tensione max. in uscita dal sensore è 10V.

Va ridotta a 5V in ingresso ad Arduino tramite un partitore

 (ad es. 1K+1K  riduco 10V a 5V  2 volte).

CODICE ARDUINO

// moltiplico x 2 per ottenere i V effettivi del sensore da usare nella formula della d(cm)

Volt = analogRead(pinS)*5/1023 * 2;  Volt = analogRead(pinS)*10/1023;

DIMENSIONAMENTO DEL PARTITORE DI TENSIONE

Se il sensore ha una tensione di uscita max. di 12V allora devo applicare la legge di Ohm per trovare le R:

 fisso ad es. la R1=1000 ohm (alta per far circolare correnti basse mA)

 I=5/1000 A

 R2= (12-5) / I = 1400 ohm

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 299

CODICE

#include "Adafruit_LEDBackpack.h"

Adafruit_7segment led_display1 = Adafruit_7segment();

int pinPompa = 3;
int pinLampada = 4;
int pinSensore = A0;

float h0=60.0; // quota sensore dal fondo
float hsp=32.0; // livello SET-POINT
float delta=2.0; // errore tollerato

float volt;
float distanza;
float altezza;
float hmax = hsp+delta/2.0;
float hmin = hsp-delta/2.0;
int stato_pompa=0; // 0 off; 1 on

void setup()
{
 pinMode(pinSensore, INPUT);
 pinMode(pinPompa, OUTPUT); // POMPA

1000

1000

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 300

 pinMode(pinLampada, OUTPUT); // LAMPADA
 led_display1.begin(112);
 Serial.begin(9600);
}

void loop()
{
 // Convert from 0-1023 range to 0-12V range (partitore riduce a 5!)
 volt= analogRead(pinSensore) * 12.0 / 1023.0;
 // Convent voltage to distance --> d= (V+2)/0,3 [cm]
 distanza= (volt+2)/0.3;
 Serial.print("dist cm "); Serial.println(distanza);
 // Get heigh
 altezza= h0-distanza;
 Serial.print("h cm "); Serial.println(altezza);
 led_display1.println(altezza);
 led_display1.writeDisplay();

 if (altezza >= hmax) {
 digitalWrite(pinPompa, LOW);
 digitalWrite(pinLampada, LOW);
 stato_pompa= 0;
 Serial.println("Spento");
 }
 else if (altezza <= hmin) {
 digitalWrite(pinPompa, HIGH);
 digitalWrite(pinLampada, HIGH);
 stato_pompa= 1;
 Serial.println("Acceso");
 }
 else {
 if (stato_pompa== 1) {Serial.println("Mantengo Acceso");}
 else { Serial.println("Mantengo Spento"); }
 }

 delay(2000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 301

CONTROLLO TEMPERATURA CON SENSORE ANALOGICO NON LINEARE

Realizzare un sistema di controllo ON-OFF di temperatura che mantenga la temperatura in un sistema chiuso a 25°C.

La tolleranza del sistema è di +-2°C. Il tempo di campionamento è di 1 secondo.

Il sensore di temperatura analogico assegnato presenta la seguente curva Temperatura [°C] – Tensione [Volt]

Dalla curva

V= 0,1875*T +4,5  T= (V-4,5)/0,1875 [°C]

La tensione max. in uscita dal sensore è 12V.

Va portata sotto i 5V in ingresso ad Arduino

tramite un partitore di tensione.

Fisso ad es. la R1=1000 ohm

 I=5/1000 A

 R2= (12-5) / I = 1400 ohm

CODICE ARDUINO

// moltiplico x 12/5 per ottenere i V effettivi

del sensore da usare nella formula della

T(°C)

Volt = analogRead(pinS)*5/1023 * 12/5;

 Volt = analogRead(pinS)*12/1023;

1400

1000

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 302

CONTROLLO DI TEMPERATURA CON TERMISTORE NTC E RELE’

Si vuole mantenere a 30°C la temperatura in un recipiente isolato con tolleranza +-1°C.

Si utilizza come elemento riscaldante una lampadina alogena da 30w attivabile tramite un relè comandato direttamente da
Arduino.

Thermistor parameters: RT0: 10KΩ B: 3977 K +- 0.75% T0: 25 C +- 5%

simulabile su “wokwi.com”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 303

CODICE

//thermistor parameters: RT0: 10 000 Ω B: 3977 K +- 0.75% T0: 25 C +- 5%

//These values are in the datasheet
#define RT0 10000 // Ω
#define B 3977 // K
//--------------------------------------
#define VCC 5 //Supply voltage
#define R 10000 //R=10KΩ
//--------------------------------------
int Tsp=30; // set point
int deltaT=2; // errore tollerato

int pinRele= 2;
int statoLamp= 0;
//Variables
float RT, VR, ln, TX, T0, VRT;

void setup() {
 Serial.begin(9600);
 pinMode(pinRele, OUTPUT);

 T0 = 25 + 273.15; // convento un Kelvin
}

void loop() {
 VRT = analogRead(A0);
 VRT = (5.00 / 1023.00) * VRT; //Conversion to voltage
 VR = VCC - VRT;
 RT = VRT / (VR / R); //Resistance of RT
 ln = log(RT / RT0);
 TX =1/(ln/ B+1/T0); //Temperature from thermistor in K
 TX = TX - 273.15; //Conversion to °C

 Serial.print("Temperatura: ");
 Serial.print(TX);
 Serial.println(" ℃");

 if (TX<(Tsp-deltaT/2)) {
 digitalWrite(pinRele, HIGH);
 Serial.println("ACCESO");
 statoLamp = 1;
 }
 else if ((TX>(Tsp+deltaT/2)))
 {
 digitalWrite(pinRele, LOW);
 Serial.println("SPENTO");
 statoLamp = 0;
 }
 else {
 if (statoLamp==0) {Serial.println("MANTENGO SPENTO");}
 else {Serial.println("MANTENGO ACCESO");}
 }

 delay(1000);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 304

CONTROLLO DI TEMPERATURA ON-OFF CON TERMISTORE NTC E NMOS

Si vuole mantenere costante la temperatura all’interno di un recipiente coibentato.

Come sensore si utilizza un termistore NTC (RT0: 10KΩ B: 3977 K +- 0.75% T0: 25 C +- 5%).

Come attuatore una lampadina alogena che alimentata a 10V fornisce circa 15w di potenza elettrica.

La lampadina viene attivata da un modulo MOSFET IRF520 per Arduino.

Il tipo di controllo è ON-OFF con tolleranza +-1°C.

“non simulabile”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 305

CODICE

//Thermistor parameters: RT0: 10KΩ B: 3977 K +- 0.75% T0: 25 C +- 5%
//From datasheet
#define RT0 10000 // Ω
#define B 3977 // K
#define VCC 5 //Supply voltage
#define R 10000 //R=10KΩ
//--------------------------------------

int pin_rele=2;
int pin_T=A0;
long t;
float delta=0.5;

//Variables
float RT, VR, ln, TX, T0, VRT;

void setup() {
 pinMode(pin_rele, OUTPUT);
 pinMode(pin_T, INPUT);

 Serial.begin(9600);
 T0 = 25 + 273.15;
 t= millis();
}

void loop() {
 VRT = analogRead(pin_T); // 0-
 VRT = (5.00 / 1023.00) * VRT; // converto in V
 VR = VCC - VRT; // tensione sulla resistenza R da 10K
 RT = VRT / (VR / R); // Resistenza di RT (V/I)
 ln = log(RT / RT0);
 TX =1/ (ln / B + 1 / T0); //Temperature from thermistor in K
 TX = TX - 273.15; //Conversion to °C

 if (TX>=(40+ delta/2)) {
 digitalWrite(pin_rele, LOW);
 }
 else if (TX<=(40-delta/2)) {
 digitalWrite(pin_rele, HIGH);
 }

 if ((millis()-t)>1000) {
 t= millis();
 Serial.print("T:");
 Serial.print(TX);
 Serial.print(",");
 Serial.print("err:");
 Serial.println(err);
 }

 delay(100);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 306

CONTROLLO IN POSIZIONE DI UNA GUIDA LINEARE CON MOTORE C.C. E ENCODER OTTICO INCREM.

L’ obiettivo è portare la guida nella posizione di SET-POINT indicata con un basso margine di errore.

Se “siamo lontani” dalla posizione Xsp di SET-PONT imponiamo una velocità di rotazione del motore alta che diminuisce man

mano che ci si avvicina al SET-POINT.

Il controllore di posizione tramite un encoder incrementale fornisce il riferimento di posizione a un controllore di velocità
(tipicamente un transistor di potenza con motori C.C.) che fornisce a sua volta la tensione di alimentazione del motore C.C. e
fissa quindi la velocità di spostamento della guida.

SCHEMA A BLOCCHI

guida

motore 600rpm – 12V

encoder 600

finecorsa

cuscinetto

Xsp

600
impulsi/giro tensione di

alimentazione 3-12 V

+

_

barra T8 2mm

finecorsa
meccanico

0/5V

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 307

LOGICA DEL SISTEMA DI CONTROLLO

Se “siamo lontani” dalla posizione Xsp di SET-PONT imponiamo una velocità di rotazione del motore alta che diminuisce man

mano che ci si avvicina al SET-POINT.

Usiamo quindi un controllore di tipo PROPORZIONALE per determinare la velocità del motore:

 vm = Kp* errore = Kp *(Xsp – Xc) Kp= coeff. Proporzionale, Xc=posizione corrente

In un motore C.C. la velocità proporzionale alla tensione di alimentazione (controllata in PWM) quindi:

 Vm= Kp* errore = Kp *(Xsp – Xc) Kp= coeff. Proporzionale , Xc=posizione corrente

Oltre e sotto una certa velocità il motore in C.C. non può andare e pertanto è necessario prevedere una condizione di saturazione

(limite sia sulla velocità massima che minima).

Per il motore in C.C. a disposizione abbiamo i seguenti limiti operativi:

 n° max = 600 rpm con Vm=12 V  10 giri/s  a_max = 20 mm/s (100%)

 n° min = 50 rpm con Vm=1 V  0,834 giri/s  a_min = 1,667 mm/s (10%)

Curva del motore lineare: n° = (10/12)*Vm [giri/s]

L’encoder ottico di tipo incrementale fornisce 600 impulsi al giro.

Noto il numero di impulsi nell’intervallo di tempo di campionamento t lo spostamento della guida vale quindi:

s= (n_impulsi/ 600) * 2 [mm]

La velocità di spostamento della guida vale:

v_a = s / t [mm/s]

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 308

SIMULAZIONE CON EXCEL DEL SISTEMA DI CONTROLLO PROPORZIONALE

E’ necessario fissare un valore di Kp che permetta il posizionamento della guida con un margine di errore adeguato alle richieste

(es. 0.1mm) e una decelerazione accettabile.

Tensione teorica di controllo del motore

Il posizionamento si raggiunge dopo circa 4 secondi con una a=-33 mm/s2.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 309

SIMULAZIONE CON EXCEL DEL SISTEMA DI CONTROLLO PID

E’ necessario fissare dei valori di Kp, Ki e Kd che permettano un posizionamento della guida con un margine di errore adeguato

alle richieste (es. 0.1mm) e una decelerazione accettabile.

Integrale errore  somma aree errore nell’intervallo di tempo

Derivata errore  variazione errore nell’intervallo di tempo

Tensione di controllo del motore

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 310

Con il PID il posizionamento si raggiunge in oltre 3 secondi con una a=-26 mm/s2

Senza integrale e derivata dell’ errore il posizionamento si raggiunge in oltre 4 secondi con una a=-33 mm/s2

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 311

SCHEMA SISTEMA DI CONTROLLO POSIZIONE CON ARDUINO E TRANSISTOR DI POTENZA TIP120

D S + - N.A.

Completare lo schema del sistema di controllo.

Dimensionare eventuali componenti mancanti.

Utilizzare il finecorsa meccanico N.A. come un semplice pulsante in modalità PULL-UP (0 se premuto).

Scrivere il programma Arduino che implementa il sistema di controllo proporzionale della posizione.

Ipotizzare che all’accensione la guida si trovi nella posizione X=0 (finecorsa premuto).

motore 600rpm – 12V

encoder 600 finecorsa

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 312

SCHEMA SISTEMA DI CONTROLLO CON TRANSISTOR DI POTENZA TIP120 E PONTE H L298N

D S + - N.A.

Completare lo schema del sistema di controllo.

Dimensionare eventuali componenti mancanti.

Utilizzare il finecorsa meccanico N.A. come un semplice pulsante in modalità PULL-UP (0 se premuto).

Scrivere il programma Arduino che implementa il sistema di controllo proporzionale della posizione.

All’accensione la guida deve essere portata nella posizione X=0 (finecorsa premuto).

motore 600rpm – 12V

encoder 600 finecorsa

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 313

CONTROLLO IN POSIZIONE E IN VELOCITA’

Lo schema usato e quello dei controllori in cascata.

Un controllore di posizione piu esterno (outer loop) fornisce il riferimento (di velocità) a un controllore di velocità interno (inner

loop).

Concettualmente: se “siamo lontani” imponiamo una velocità alta che diminuisce man mano che ci si avvicina al target.

Praticamente usiamo un controllore proporzionale:

 target_speed = Kp* error_pos = Kp *(target_pos – current_pos) Kp= coeff. proporzionale

Tuttavia, oltre una certa velocità non potremo andare. Pertanto e necessario inserire una saturazione (limite sulla vel. massima).

Algoritmo del sistema di controllo

void loop(){
 current_pos = read encoder();
 current speed = ∆current pos ∆t ;
 pos error = target pos − current pos;
 target speed = position controller(pos error);
 speed error = target speed − current speed;
 pwm = speed controller(speed error);
 drive motor(pwm);
 delay(∆t);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 314

CONTROLLO DI TEMPERATURA “P.I.D.” CON NTC E RF520

Si vuole mantenere costante la temperatura all’interno di un recipiente coibentato.
Come sensore si utilizzi un termistore NTC (RT0: 10KΩ B: 3977 K +- 0.75% T0: 25 C +- 5%).
Come attuatore una lampadina alogena che alimentata a 10V fornisce circa 15w di potenza elettrica.
La lampadina viene attivata da un modulo IRF520 per arduino.
Il tipo di controllo è un P.I.D.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 315

CODICE

//Thermistor parameters: RT0: 10KΩ B: 3977 K +- 0.75% T0: 25 C +- 5%
//From datasheet
#define RT0 10000 // Ω
#define B 3977 // K
#define VCC 5 //Supply voltage
#define R 10000 //R=10KΩ
//--------------------------------------

long t;
int pin_pwm=3;
int pin_T=A0;

float Tsp=43.0;
float T_misurata=20.0;
double err;
double e_pre = 0; //last error of speed
double e_sum = 0; //sum error of speed
double pwm_value = 0; //this value is 0~255

long prevT;
long currT;
float deltaT;

double kp = 200;
double ki = 6;
double kd = 0.0;

//Variables per termistore
float RT, VR, ln, TX, T0, VRT;

void setup() {
 pinMode(pin_pwm, OUTPUT);
 pinMode(pin_T, INPUT);
 Serial.begin(9600);
 T0 = 25 + 273.15;
 t= millis();
}

void loop() {
 // misura T con termistore NTC
 VRT = analogRead(pin_T); // 0-1023  tensione sul termistore
 VRT = (5.00 / 1023.00) * VRT; // converto in V
 VR = VCC - VRT; // tensione sulla resistenza R da 10K
 RT = VRT / (VR / R); // Resistenza di RT (V/I)
 ln = log(RT / RT0);
 TX =1/ (ln / B + 1 / T0); //Temperature from thermistor in K
 TX = TX - 273.15; //Conversione in °C
 T_misurata = TX;
 //--

 // misura intervallo di campionamento DeltaT
 currT = micros();
 deltaT = ((float) (currT-prevT))/1.0e6; // intervallo di tempo
 prevT = currT;

 //PID code
 err = Tsp - T_misurata; // error speeed
 // calculate voltage power for R with P.I.D.
 // proportional integral derivative
 pwm_value = kp * err + ki * e_sum + kd * (err - e_pre)/ deltaT;
 e_sum += (err * deltaT); //sum of error --> integral
 e_pre = err; //save last (previous) error

 // set limit to sum of error (integral)
 if (e_sum >50) {e_sum = 50; }
 else if (e_sum <-50) {e_sum = -50; }

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 316

 // set PWM limits 0-255
 if(pwm_value > 255) { pwm_value = 255; }
 else if(pwm_value < 0) { pwm_value = 0; }

 analogWrite(pin_pwm, pwm_value);

 if ((millis()-t)>1000) {
 t= millis();
 Serial.print("T:");
 Serial.print(TX);
 Serial.print(",");
 Serial.print("PWM%:");
 Serial.print(pwm_value /255*100);
 Serial.print(",");
 Serial.print("err:");
 Serial.println(err);
 }

}

Con le costati PID calibrate opportunamente l’errore a regime è di +-0,1°C !!!

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 317

ESP32

L’ESP32 è una scheda elettronica integrata (SoC) sviluppata da Espressif Systems. È un chip a basso costo e ad alte prestazioni

che offre una varietà di funzionalità, tra cui:

 Processore dual core a 32 bit con clock fino a 240 MHz

 Wi-Fi 802.11 b/g/n,

 Bluetooth 5.0,

 25 piedini GPIO,

 Supporto per sensori e periferiche.

Per quanto riguarda gli utilizzi possibili, L’ESP32 è una piattaforma che può essere utilizzata per una varietà di applicazioni:

- Internet delle cose (IoT)

- Dispositivi indossabili

- Giochi e intrattenimento

- Sistemi di automazione e controllo

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 318

LA SCHEDA DI SVILUPPO DEVKITC

L’ESP32 è un chip versatile ed ampiamente adottato dalla industria “automotive” per esempio, ma per essere usato da hobbysti

e programmatori ha bisogno di una scheda di sviluppo che fornisca la alimentazione e la connessione seriale.

Il piccolo chip che provvede alla alimentazione si chiama AMS1117 e lo vedi nella foto al centro della scheda, vicino al bridge UART.

La piedinatura del modulo ESP32 WROOM

immagine della piedinatura del modulo ESP32 WROOM

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 319

Come potete vedere dall’immagine sopra del diagramma di piedinatura del modulo ESP32 WROOM, tutti i diversi tipi di pin sono

menzionati in diversi colori e sono raggruppati per uilizzo. Molti piedini posso compiere diverse funzioni.

I pin digitali

L’ESP32 ha un totale di 34 pin digitali. Questi pin sono simili ai pin digitali Arduino che consentono di aggiungere display a LED,

display OLED, sensori, pulsanti, cicalini, ecc. ai nostri progetti.

La maggior parte di questi pin supporta anche l’uso di pull-up interno (in sostanza una resistenza da 10 KOhm). Ciò li rende ideali

per il collegamento di pulsanti e tastiere a matrice, e per controllare gruppi di LED.

Il modulo WROOM ESP32 ha 25 pin GPIO e la corrente massima assorbita per un singolo GPIO è 40mA secondo la sezione

“Condizioni operative consigliate” nella scheda tecnica dell’ESP32.

Come settare i pin digitali in “OUTPUT”

È possibile utilizzare i pin GPIO in OUTPUT per controllare qualsiasi cosa, da dispositivi con minimo assorbimento come un LED,

fino a dispositivi di elevato wattaggio utilizzando dei relay o dei tiristori. Facciamo l’esempio classico in cui vogliamo accendere e

spegnere un LED esterno, ovviamente aggiungendo una resistenza di 330 Ohm!

Prima di tutto, è necessario definire il pin GPIO per operare in modalità di output nella funzione “setup()” e useremo la funzione

Arduino “pinMode()” come mostrato di seguito:

pinMode(GPIO_pin, OUTPUT);

Quindi puoi settare il pin HIGH o LOW per cambiarne lo stato digitale. Puoi accendere il LED scrivendo HIGH o 1: Vengono

interpretati allo stesso modo.

Per spegnerlo ovviamente puoi scrivere un LOW o 0. In entrambi casi si utilizza la funzione Arduino “digitalWrite()” come vedi in

basso:

 digitalWrite(GPIO_pin, HIGH); // Accendi il LED

 digitalWrite(GPIO_pin, LOW); // Spegni il LED

Come settare i pin digitali in “INPUT”

I pin dell’ESP32 possono essere usati in modalità di INPUT per leggere segnali digitali esterni. I segnali possono provenire da vari

dispositivi come un piccolo pulsante, un sensore di prossimità digitale o magari un sensore di gas digitale.

Proprio come per la modalità di OUTPUT, è necessario prima definire il pin GPIO usando la funzione Arduino “pinMode()” come

mostrato di seguito:

pinMode(GPIO_pin, INPUT);

Supponiamo di volere legere un normale tast: Dopo il collegamento elettrico, possiamo leggere il segnale usando la funzione

Arduino “digitalRead()” come nella riga successiva.

BTN_State = digitalRead(GPIO_pin);

E’ questo è tutto! Come vedi la libreria di Arduino trasforma la intera operazione in una singola riga di codice. Il problema,

casomai, potrebbe nascere dal punto di vista elettrico perchè il tasto potrebbe richiedere una resistenza di “pull-up” o “pull-

down” per stabilizzare la tensione letta dal GPIO del controller.

Lasciare il pin di ingresso digitale fluttuante è una pratica estremamente “scorretta”: l’ESP32 rileverà molto rumore elettrico e la

unità di lettura del chip potrebbe non distinguere tra la tensione a 0 o 1. La soluzione consiste nell’inserire una resistenza da 10

kOhm tra il pin di GPIO e la alimentazione (+3.3V). In questo caso parliamo di resistenza di “pull-up”.

Alcuni pin dell’ESP32 sono già forniti di una resistenza di “pull-up” e non necessitano di alcuna resistenza aggiuntiva:

Pin con INPUT_PULL-UP (dispongono di una resistenza di 10KOhm):

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 320

 GPIO14

 GPIO16

 GPIO17

 GPIO18

 GPIO19

 GPIO21

 GPIO22

 GPIO23

Altri pin invece non ne sono dotati e richiedono una resistenza esterna:

 GPIO13

 GPIO25

 GPIO26

 GPIO27

 GPIO32

 GPIO33

I pin analogici

Alcuni dei pin elencati nel diagramma di ESP32 possono essere utilizzati per interagire con sensori analogici, come i classici pin

analogici di Arduino.

 I pin analogici dell'ESP32 hanno una risoluzione di 12 bit (0-4096). Se la tensione osservata è 0 il valore rilevato dalla CPU è 0.

Se la tensione arriva sul pin a 3,3V il valore rilevato diventa 4096.

Questi i pin di ingresso analogico:

 ADC1_CH0 (GPIO 36)

 ADC1_CH1 (GPIO 37)

 ADC1_CH2 (GPIO 38)

 ADC1_CH3 (GPIO 39)

 ADC1_CH4 (GPIO 32)

 ADC1_CH5 (GPIO 33)

 ADC1_CH6 (GPIO 34)

 ADC1_CH7 (GPIO 35)

 ADC2_CH0 (GPIO 4)

 ADC2_CH1 (GPIO 0)

 ADC2_CH2 (GPIO 2)

 ADC2_CH3 (GPIO 15)

 ADC2_CH4 (GPIO 13)

 ADC2_CH5 (GPIO 12)

 ADC2_CH6 (GPIO 14)

 ADC2_CH7 (GPIO 27)

 ADC2_CH8 (GPIO 25)

 ADC2_CH9 (GPIO 26)

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 321

COME COLLEGARE UN SENSORE ELETTRONICO AD ESP32

Per essere collegato ad ESP32, un sensore elettronico deve avere le seguenti caratteristiche:

Tensione di alimentazione compatibile: Il sensore dovrebbe in linea di massima usare la stessa tensione di alimentazione di

ESP32, che è di 3,3V. Se il sensore richiede una tensione diversa, è necessario utilizzare un convertitore di tensione. In genere i

convertitori di tensione sono dei dispositivi molto economici ma la loro presenza tende a complicare il progetto complessivo. Nel

dubbio sarebbe meglio evitare sensori con alimentazione fuori dal range 3.3~5.0 V.

Livello di segnale ben definito: Il sensore deve fornire segnali digitali o analogici compatibili con l’ESP32. Per i segnali digitali, il

sensore deve utilizzare una tensione di 3,3V per indicare “1” e 0V per indicare “0”. Per i segnali analogici, il sensore deve fornire

una tensione compresa tra 0V e 3,3V che rappresenta il valore misurato. Segnali fuori range possono danneggiare i pin GPIO

usati come input. Al contrario segnali troppo bassi o oscilanti richiedono delle resistenze di “pull-up” o “pull-down”.

I CANALI DI COMUNICAZIONE DISPONIBILI

Il sensore deve utilizzare un’interfaccia di comunicazione compatibile con l’ESP32, come:

I2C: Interfaccia di comunicazione seriale a due fili.

L’I2C (Inter-Integrated Circuit) è un’interfaccia di comunicazione seriale sincrona a due fili utilizzata per collegare dispositivi a un

microcontrollore, come l’ESP32. I due fili sono: SDA (Serial Data): Bidirezionale per la trasmissione e la ricezione di dati. SCL

(Serial Clock): Fornisce un segnale di clock per sincronizzare la comunicazione.

SPI: Interfaccia di comunicazione seriale a quattro fili.

SPI (Serial Peripheral Interface) è un’interfaccia di comunicazione seriale sincrona a quattro fili utilizzata per collegare dispositivi

a un microcontrollore, come l’ESP32. I quattro fili di SPI sono: MOSI (Master Out Slave In): Il master invia dati allo slave. MISO

(Master In Slave Out): Lo slave invia dati al master. SCK (Serial Clock): Il master fornisce un segnale di clock per sincronizzare la

comunicazione. SS (Slave Select): Il master seleziona lo slave con cui comunicare.

UART: Interfaccia di comunicazione seriale asincrona.

L’UART (Universal Asynchronous Receiver Transmitter) è un’interfaccia di comunicazione seriale asincrona che utilizza un solo

filo per la trasmissione dati e uno per la ricezione.

GPIO: Sono i normali pin di input e output dell’ESP32 e possono leggere sia i valori dei sensori analogici quanto quelli dei sensori

digitali. Un pin GPIO che legga un sensore digitle è la situazione più semplice per collegare un sensore. Sensori come il sensore

DHT11 ricadono in questa casistica.

LE LIBRERIE DI COMUNICAZIONE SOFTWARE PER ESP32

I2C:

Libreria Wire: Libreria ufficiale Espressif per la comunicazione I2C. Semplice da usare e compatibile con la maggior parte dei

dispositivi I2C. Adafruit_I2C: Libreria Adafruit con molte funzioni avanzate per la comunicazione I2C, come la scansione dei

dispositivi e la gestione di più bus I2C.

SPI:

Libreria SPI: Libreria ufficiale Espressif per la comunicazione SPI. Semplice da usare e compatibile con la maggior parte dei

dispositivi SPI. Adafruit_SPIDevice: Libreria Adafruit che facilita la comunicazione con dispositivi SPI specifici, come display LCD e

schede SD.

UART:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 322

SoftwareSerial: Libreria ufficiale Espressif per la comunicazione UART software. Permette di utilizzare i pin GPIO per la

comunicazione UART. HardwareSerial: Libreria ufficiale Espressif per la comunicazione UART hardware. Permette di utilizzare le

porte UART integrate dell’ESP32. Librerie aggiuntive:

PubSubClient: Libreria per la comunicazione con broker MQTT. WiFiManager: Libreria per la gestione della connessione Wi-Fi.

AsyncTCP: Libreria per la comunicazione TCP/IP asincrona.

ESEMPI DI CODICE C++ PER LEGGERE I SENSORI I2C

Per leggere un sensore I2C con ESP32, è necessario seguire questi passaggi:

Collegare il sensore all’ESP32:

Collegare il pin VCC del sensore al pin 3V3 dell’ESP32. Collegare il pin GND del sensore al pin GND dell’ESP32. Collegare il pin SDA

del sensore al pin SDA dell’ESP32. Collegare il pin SCL del sensore al pin SCL dell’ESP32. 2. Installare la libreria Wire:

La libreria Wire fornisce le funzioni per la comunicazione I2C. Apri l’IDE di Arduino e vai su “Strumenti > Gestisci librerie”.

Cerca la libreria “Wire” e clicca su “Installa”. 3. Icolla il codice seguente:

#include <Wire.h>

void setup() {
 // Inizializzare la comunicazione I2C
 Wire.begin();
 // Impostare indirizzo del sensore
 Wire.setI2CAddress(0x42);
}
void loop() {
 // Richiedere un byte di dati dal sensore
 uint8_t data = Wire.read();
 // Attendi un secondo
 delay(1000);
}

ESEMPI DI CODICE C++ PER LEGGERE I SENSORI SPI

Per leggere dati da un dispositivo slave, è necessario utilizzare la funzione SPI.read(). Esempio di codice per utilizzare SPI con

ESP32:

#include <SPI.h>

void setup() {
 // Configura i pin SPI
 SPI.begin(SCK, MISO, MOSI, SS);
 // Imposta la velocità di clock
 SPI.setFrequency(
 // Inizializza la comunicazione SPI
 SPI.beginTransaction();
}

void loop() {
 // Scrivi i dati su un dispositivo slave
 SPI.write(0x55);
 // Leggi i dati da un dispositivo slave
 uint8_t data = SPI.read();
}

Come leggere i valori che giungono dalla interfaccia UART

Collegare il dispositivo UART all’ESP32. Collegare il pin TX del dispositivo UART al pin RX dell’ESP32. Collegare il pin RX del

dispositivo UART al pin TX dell’ESP32. Collegare il pin GND del dispositivo UART al pin GND dell’ESP32. 2. Configurare la

comunicazione UART:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 323

Apri l’IDE di Arduino e vai su “Strumenti > Porta”. Seleziona la porta seriale a cui è collegato il dispositivo UART. Imposta il “baud

rate” della porta seriale. Il baud rate deve essere compatibile con il dispositivo UART. 3. Incolla il codice:

#include <SoftwareSerial.h>
SoftwareSerial mySerial(RX, TX);

void setup() {
 // Inizializza la comunicazione UART
 mySerial.begin(9600);
}

void loop() {
 // Controlla se ci sono dati disponibili
 if (mySerial.available()) {
 // Leggi un byte di dati
 uint8_t data = mySerial.read();
 }

 // Attendi 1 secondo
 delay(1000);
}

Come leggere i segnali attraverso i pin GPIO

Collegare il sensore all’ESP32: Collegare il pin di uscita del sensore a un pin GPIO dell’ESP32. Collegare il pin GND del sensore al

pin GND dell’ESP32. Configurare il pin GPIO: Impostare il pin GPIO come input. Impostare il pin GPIO come pull-up o pull-down

(opzionale).

// Imposta il pin GPIO come input
pinMode(GPIO_NUM, INPUT)
// Imposta il pin GPIO come pull-up
digitalWrite(GPIO_NUM, HIGH);
void setup() {
}
void loop() {
 // Leggi il valore del pin GPIO
 uint8_t value = digitalRead(GPIO_NUM);
 // Attendi un secondo
 delay(1000);
}

La funzione pinMode() imposta il pin GPIO come input. La funzione digitalWrite() imposta il pin GPIO come pull-up.

La funzione digitalRead() legge il valore del pin GPIO.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 324

⌂

ROBOTICA INDUSTRIALE

La robotica industriale è un settore sviluppato negli ultimi anni, che vede l’utilizzo di sistemi automatici come parte integrante

del lavoro industriale. Nella robotica industriale, un sistema di automazione dunque, sostituisce un uomo nella catena di

montaggio, compiendo sempre lo stesso lavoro ad un ritmo costante e frenetico.

Tutti gli strumenti meccanici progettati per compiere un determinato lavoro in autonomia rientrano a far parte della robotica

industriale. Il sistema automatico nella fattispecie viene chiamato robot.

 ISO 8373

Esiste poi un’altra definizione che risale all’ISO 8373, che generalmente rappresenta il vocabolario per la materia di robotica

industriale e dei robot implementati in questo settore. La definizione in questione afferma che un robot è un sistema con

controllo automatico, riprogrammabile e multi-funzione, che può essere sia fisso a terra sia mobile, di tre o più assi ed il suo

scopo è quello di essere utilizzato per operazioni di automazione industriale.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 325

SISTEMI ROBOTICI

I sistemi robotici sono sistemi costituiti da un insieme di corpi rigidi (link) connessi mediante giunti rotazionali (R) o prismatici

(P). Il numero di giunti indipendenti definisce I gradi di libertà del robot DOF (degrees of freedom).

TIPI DI GIUNTO

Le tipologie principali di giunti sono due: rotazionali “R” e prismatici “P”.

R = rotazionale P= prismatico

TIPI DI ROBOT

Le tipologie principali di robot si differenziano in base al tipo di giunti adottato.

CARTESIANO PPP

CILINDRICO RPP

POLARE RRP

SCARA RRP

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 326

ANTROPOMORFO RRR

ROBOT COLLABORATIVI (COBOT)

Robot collaborative (collaborative robot) o più semplicemente cobot.

I cobot aiutano ogni giorno gli operatori in tutte le attività pesanti o di precisione, portando nelle filiere qualità, velocità,

sicurezza ed efficienza. Il tutto in un’unica soluzione.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 327

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 328

LE DIFFERENZE TRA ROBOT E COBOT: 4 COSE DA SAPERE

Le normative ISO 10218-1 e -2 definiscono 4 diversi metodi per ottenere operazioni collaborative, mentre l’ISO / TS 15066

aggiunge in termini di Safety& Security ulteriori linee guida e alcuni requisiti aggiuntivi.

ARRESTO MONITORATO

Un robot tradizionale viene utilizzato all’interno di una recinzione. Una persona può entrare nell’area di lavoro attraverso

un’apertura (interruttore della porta, barriera fotoelettrica o soluzione di sicurezza della telecamera che identifica che una

persona sta entrando). All’ingresso dell’operatore, il robot viene messo in pausa. Una funzione di arresto di sicurezza viene

utilizzata mentre la persona entra e fa il suo lavoro (ad es. Carico / scarico di pezzi). Quando la persona lascia l’area di lavoro, il

robot può riprendere il funzionamento automatico. Chiamare questo metodo collaborativo sembra un po’ strano, ma gli

standard lo definiscono collaborativo perché l’elettricità ai motori dei robot viene mantenuta mentre è presente una persona. La

sicurezza dei cobot è tale per cui non sono previste recinzioni e la messa in pausa non deve essere programmata perché avviene

in automatico.

GUIDA MANUALE

La guida manuale fa parte del meccanismo di funzionamento di un robot che, tipicamente, esegue il compito che gli è stato

assegnato. Un task che non va confuso con la programmazione manuale dei cobot. Questo metodo utilizza un robot tradizionale

all’interno di una recinzione. Una persona entra periodicamente nella cella per eseguire un compito come, ad esempio, avvitare

alcune viti. Quando entra, il robot industriale tradizionale passano da modalità non collaborativa a modalità collaborativa (ad es.

Velocità massima 100 mm / s e movimento di regolazione massima +/- 50 mm). L’industria automobilistica utilizza questo

metodo da anni per posizionare le sedie all’interno delle automobili e per tenere i paraurti mentre vengono avvitati. La

programmazione di un cobot non prevede alcuna compilazione del codice da parte degli utenti: basta scaricare il software

funzionale ai task e impostare in maniera intuitiva l’iter dei vari movimenti che eseguirà il cobot (potendoli modificare quando

necessario).

MONITORAGGIO DELLA VELOCITÀ E DELLA SEPARAZIONE

Questo metodo è simile allo “stop di sicurezza monitorato” ma, invece di mettere in pausa il robot, la procedura riduce la

velocità del robot in base alla distanza tra il robot e l’operatore. Un modo per farlo è utilizzare una telecamera che determina la

distanza in modo sicuro. Un altro modo è utilizzare una pellicola sensorizzata integrata nel robot, che percepisce quando una

persona è vicina al robot e quindi lo blocca prima che questo arrivi a toccare l’operatore. Il cobot, essendo dotato di appositi

sensori, si muove mantenendo sempre una distanza di sicurezza da cose e persone, arrivando a bloccarsi e a ripartire da solo.

LIMITAZIONE DI POTENZA E FORZA

Una caratteristica unica dei cobot UR è la limitazione della potenza e della forza. I cobot, infatti, sono sensibili al movimento e

quindi si fermano prima di mettere a rischio l’operatore. La regolazione della velocità, della forza e della pressione, infatti, sono

determinanti e sono le caratteristiche peculiari dei robot collaborativi UR.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 329

ROBOT PLANARE

Un robot planare in genere presenta solo 2 gradi di libertà.

In un piano orizzontale si muovono 2 bracci articolati, incernierati ad una estremità con un asse verticale fisso, mentre all’altra

estremità libera si trova l’end effector (ad es. laser).

In alcune applicazioni è previsto un terzo asse che permette un movimento lineare verticale dei 2 bracci (3 gradi di libertà).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 330

MECCATRONICA: DIMENSIONAMENTO LINK LASER PLANARE

Il PETG è un capoliestere di polietilene tereftalato trasparente: è una versione modificata di PET.

La “G” sta per “glicole modificato”, che viene aggiunto alla composizione del materiale durante la polimerizzazione.

* Modulo trazione: gradiente della curva nel diagramma sforzo-deformazione

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 331

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 332

DIMENSIONARE I LINK DEL ROBOT PLANARE ASSEGNATO

Dimensionare i link (sezione rettangolare) del robot planare assegnato sapendo che sono realizzati in material PETG.
La velocità massima del motore stepper è di 1200 rpm.
Contenere la deformazione dei link (freccia) nella posizione assegnata a 0.5mm..

Motore NEMA 17

Laser 10watt: massa=500g; parallepipedo 47x40mm

Passo Angle 1.8 ° Coppia motrice massima 59 Nmm (83.6oz.in)

Corrente nominale/phase2.0A Fase Resistance 1.4ohms

Voltage2.8V Inductance 3.0mH ± 20%(1KHz)

Weight 400g

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 333

SOLLECITAZIONI SUI L INK DEL ROBOT PLANARE NELLA POSIZIONE DISTESA

4N

5N

190mm

10mm

45mm

240Nmm

54mm INCASTRO

Fc

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 334

PIANO VERTICALE: TAGLIO + FLESSIONE

Tmax= 9N

Mf max=1.17Nm

PIANO ORIZZONTALE

Mf max=0.24Nm

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 335

CALCOLO SFORZI E DEFORMAZIONE PETG NELLA POSIZIONE DISTESA

PETG

R 50 N/mm2

E 2200 N/mm2

ksic. min 4,5 1,5*3

 amm 11,11 N/mm2

 amm 6,40 N/mm2

b 45 mm

h 10 mm

l 190 mm

l' 54 mm Nema

Wfx=bh^2/6 750 mm3

Ix=bh^3/12 3750 mm4

Wfy=hb^2/6 3375 mm3

SOLLECITAZIONI MASSIME

Mf max
verticale 1170 Nmm

T max verticale 9 N

Mf max orizz. 240 Nmm

FORZA CENTRIFUGA (m*w^2*r)

ngiri 1200 rpm

 125,66 rad/s

massa Laser 0,5 Kg

Fc laser 1500,18 N

massa Nema 17 0,40 Kg

Fc motore 341,09 N

FLESSIONE

 max vert. 1,56 N/mm2

 max orizz. 0,07 N/mm2

TRAZIONE

 max 4,09 N/mm2

SFORZO ASSIALE MASSIMO

 max tot. 5,72 N/mm2

TAGLIO

 max 0,03 N/mm2

DEFORMAZIONE ELASTICA

F1 4,0

F2 5,0

R 9,0 N

distanza R 129,6 mm

deformazione 1,34 mm

Freccia max = 1.35mm

 id = 1.54 MPA

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 336

CALCOLO SFORZI E DEFORMAZIONE ALLUMINIO 6061 NELLA POSIZIONE DISTESA

ALLUMINIO

R 309,99 N/mm2

E 68899 N/mm2

ksic. min 4,5 1,5*3

 amm 68,89 N/mm2

 amm 39,68 N/mm2

b 45 mm

h 10 mm

l 190 mm

l' 54 mm Nema

Wfx=bh^2/6 750 mm3

Ix=bh^3/12 3750 mm4

Wfy=hb^2/6 3375 mm3

SOLLECITAZIONI MASSIME
Mf max
verticale 1170 Nmm

T max verticale 9 N

Mf max orizz. 240 Nmm

FORZA CENTRIFUGA (m*w^2*r)

ngiri 1200 rpm

 125,66 rad/s

massa Laser 0,5 Kg

Fc laser 1500,18 N

massa Nema 17 0,40 Kg

Fc motore 341,09 N

FLESSIONE

 max vert. 1,56 N/mm2

 max orizz. 0,07 N/mm2

TRAZIONE

 max 4,09 N/mm2

SFORZO ASSIALE MASSIMO

 max tot. 5,72 N/mm2

TAGLIO

 max 0,03 N/mm2

DEFORMAZIONE ELASTICA

F1 4,0

F2 5,0

R 9,0 N

distanza R 129,6 mm

deformazione 0,04 mm

Freccia max = 0.05 mm

 id = 1.68 MPa

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 337

MIGLIORARE LA RESISTENZA A DEFORMAZIONE ELASTICA TRAMITE NERVATURE LATERALI

Adottoando un profile a T si ottiene un netto miglioramento.

 id = 1.2 MPa

Freccia max = 0.48 mm

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 338

CALCOLO SFORZI E DEFORMAZIONE SUL MODELLO EFFETTIVO IN ABS NELLA POSIZIONE DISTESA

Freccia max = 3.5 mm

 id = 4 MPa

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 339

SOLLECITAZIONI SUI L INK DEL ROBOT PLANARE NELLA POSIZIONE AD ANGOLO RETTO

In questa posizione la forza di taglio da 5N genera anche un momento torcente nella sezione incastrata.

Determinare la  id .

INCASTRO

4N

5N

240Nmm

Fc

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 340

In questa posizione la presenza di un momento torcente risulta comunque meno gravosa del momento flettente maggiore che si

ha nella posizione distesa.

 id = 1.3 MPa

Freccia max = 0.72 mm

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 341

CINEMATICA DEL ROBOT

La cinematica del robot è lo studio del suo movimento prescindendo dalle cause che lo generano.

Il robot viene visto come una catena di corpi rigidi, dalla base all’end effector, connessi da giunti che consentono un singolo

grado di libertà. La conoscenza del modello cinematico del robot è essenziale nei problemi di pianificazione del moto e controllo

CINEMATICA DIRETTA DEL ROBOT PLANARE A 2 LINK

La cinematica diretta, noti gli angoli dei link 1 e link 2, permette di ricavare la posizione finale P(xp,yp) della pinza.

Gli angoli si misurano come indicato in figura e sono positive se in senso antiorario e neagativi in senso orario.

FOGLIO DI CALCOLO

Il problema presenta due possibili soluzioni dette a “gomito alto” e a “gomito basso”.

x =C4*COS(RADIANTI(C7))+ C5*COS(RADIANTI(C7+C8))

y =C4*SEN(RADIANTI(C7))+ C5*SEN(RADIANTI(C7+C8))

Da semplici considerazioni geometriche:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 342

 30

 30

 60

 -30

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 343

CINEMATICA INVERSA DEL ROBOT DEL ROBOT PLANARE

Nota la posizione P(xp,yp) che si vuole raggiungere si devono ricavare gli angoli necessari.

FOGLIO DI CALCOLO

S2 = sen C2 = cos 





 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 344

ESERCIZIO CINEMATICA INVERSA DEL ROBOT DEL LASER PLANARE

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 345

ESERCIZIO TAGLIO LASER SCARA 2 ASSI

Simulare un TAGLIO LASER SCARA dotato di 2 motori stepper.

 ST1  movimento angolare link1 (motore con rapporto riduzione 1.8:1  360 step per giro)
 ST2  movimento angolare link2 (motore con rapporto riduzione 1.8:1  360 step per giro)

Il robot, partendo dalla posizione di riposo A deve raggiungere prima la posizione B e poi C e attivare il LASER per 1s.
Durante gli spostamenti deve essere accesa una lampadina di energenza a 12V – 150mA.

Al termine del ciclo si deve rientrare alla posizione di riposo A.

simulabile su “wokwi.com”

LASER

emergenza

ST1 ST2

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 346

Schema con relè per attivare il laser

 simulabile su “wokwi.com”

CODICE

// Nema 17 200 passi per giro accoppiato a riduttore 1.8:!

// "arrow": "orange", "display": "angle", "gearRatio": "1.8:1"

#define DIR_PIN1 8

#define STEP_PIN1 9 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)

#define DIR_PIN2 3

#define STEP_PIN2 4 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)

#define DELAY_ST 10000 // 2000 micros

#define LASER_PIN 1

#define LED_PIN 0

int idMotor; // 1,2 ...

LASER

ST1
ST2

emergenza

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 347

void setup() {

 pinMode(DIR_PIN1, OUTPUT); pinMode(STEP_PIN1, OUTPUT);

 pinMode(DIR_PIN2, OUTPUT); pinMode(STEP_PIN2, OUTPUT);

 pinMode(LASER_PIN, OUTPUT);

 pinMode(LED_PIN, OUTPUT);

 delay(1000);

}

void loop() {

 attivaEmergenza(HIGH);

 // B 60 antior ; 99 orario

 attivaStepper(1,60,LOW); attivaStepper(2,99,HIGH); delay(500);

 attivaLaser(1000);

 delay(3000);

 // C 84 antior; 84 antior

 attivaStepper(1,abs(84-60),LOW); attivaStepper(2,abs(84-99),LOW); delay(500);

 attivaLaser(1000);

 delay(3000);

 // A 0 orario; 0 antior

 attivaStepper(1,84,HIGH); attivaStepper(2,84,LOW);

 attivaEmergenza(LOW);

 delay(3000);

}

// orientation --> LOW=antiorario; HIGH=orario

void attivaStepper(int id, int postion, int orientation) {

 // stepper 1

 if (id==1) {

 digitalWrite(DIR_PIN1, orientation);

 for (int i = 0; i < postion; i++) {

 digitalWrite(STEP_PIN1, HIGH); delayMicroseconds(DELAY_ST);

 digitalWrite(STEP_PIN1, LOW); delayMicroseconds(DELAY_ST);

 }

 }

 // stepper 2

 else if (id==2) {

 digitalWrite(DIR_PIN2, orientation);

 for (int i = 0; i < postion; i++) {

 digitalWrite(STEP_PIN2, HIGH); delayMicroseconds(DELAY_ST);

 digitalWrite(STEP_PIN2, LOW); delayMicroseconds(DELAY_ST);

 }

 }

}

void attivaLaser(int sec) {

 digitalWrite(LASER_PIN, HIGH); delay(2000); digitalWrite(LASER_PIN, LOW);

}

void attivaEmergenza(int stato) {

 if (stato==HIGH) { digitalWrite(LED_PIN, HIGH);}

 if (stato==LOW) { digitalWrite(LED_PIN, LOW);}

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 348

ESERCIZIO TAGLIO LASER SCARA 2 ASSI CON EMERGENZA E RESET

Il laser deve raggiungiere le tre poszioni B,C,D assegnate.

Se viene attivata l’emergenza (slider) il laser si deve FERMARE.

Per ripartire deve essere sbloccata l’emergenza e poi premuto il reset (push button giallo).

FOGLIO DI CALCOLO

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 349

CODICE

#include <LiquidCrystal_I2C.h>

#include <Servo.h>

LiquidCrystal_I2C lcd(0x27, 20, 4);

// Nema 17 200 passi per giro accoppiato a

// vite T8 Trapezoidale Senza Fine Ø8 Mm Pitch 2mm 1 Principio

#define DIR_PIN1 8

#define STEP_PIN1 9 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)

#define DIR_PIN2 3

#define STEP_PIN2 4 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)

#define DELAY_ST 15000 // 2000 micros

#define LED_PIN 2

#define POLSO_PIN 5

#define PINZA_PIN 6

#define RESET_PIN 13

#define EM_PIN 12

int idMotor; // 1,2 ...

int statoEmergenza;

int segno,teta1, teta2;

void setup() {

 pinMode(DIR_PIN1, OUTPUT);

 pinMode(STEP_PIN1, OUTPUT);

 pinMode(DIR_PIN2, OUTPUT);

 pinMode(STEP_PIN2, OUTPUT);

 pinMode(EM_PIN, INPUT_PULLUP);

 pinMode(RESET_PIN, INPUT_PULLUP);

 pinMode(LED_PIN, OUTPUT);

 lcd.init();

 lcd.backlight();

 lcd.setCursor(0, 0); lcd.print("teta1 ");

 lcd.setCursor(0, 1); lcd.print("teta2 ");

 // all'inizio devo garantire di essere in HOME

 teta1=0;

 teta2=0;

 statoEmergenza= LOW;

 Serial.begin(115200);

 delay(1000);

}

void loop() {

 lcd.setCursor(7, 1);

 // RESET PREMUTO?

 if (digitalRead(RESET_PIN) == LOW) {

 statoEmergenza= LOW;

 // HOME

 muoviLink1(-teta1);

 muoviLink2(-teta2);

 attivaLampada(LOW);

 delay(1000);

 }

 // EMERGENZA PREMUTA?

 if (digitalRead(EM_PIN) == LOW) { statoEmergenza=HIGH; attivaLampada(HIGH); }

 if (statoEmergenza==LOW) {

 muoviLink(1,47);

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 350

 delay(1000);

 muoviLink(2,-72);

 delay(1000);

 muoviLink(1,70-teta1);

 delay(1000);

 muoviLink(2,-34-teta2);

 delay(1000);

 muoviLink(1,86-teta1);

 delay(1000);

 muoviLink(2,-40-teta2);

 delay(1000);

 muoviLink(1,-teta1);

 delay(1000);

 muoviLink(2,-teta2);

 delay(1000);

 }

}

// +antiorario; - orario

void muoviLink(int link, int angolo) {

 int position;

 int orientation;

 position= abs(angolo);

 if (angolo>=0) {segno=1; orientation=LOW;}

 else {segno=-1;orientation=HIGH;}

 if (link==1) {

 digitalWrite(DIR_PIN1, orientation);

 for (int i = 0; i < position; i++) {

 if (digitalRead(EM_PIN) == HIGH && statoEmergenza==LOW) {

 statoEmergenza=0;

 teta1= teta1 + segno;

 digitalWrite(STEP_PIN1, HIGH); delayMicroseconds(DELAY_ST);

 digitalWrite(STEP_PIN1, LOW); delayMicroseconds(DELAY_ST);

 lcd.setCursor(7, 0); lcd.print(teta1); Serial.println(teta1);

 }

 else { statoEmergenza=HIGH; break;}

 }

 }

 if (link==2) {

 digitalWrite(DIR_PIN2, orientation);

 for (int i = 0; i < position; i++) {

 if (digitalRead(EM_PIN) == HIGH && statoEmergenza==LOW) {

 statoEmergenza=0;

 teta2= teta2 + segno;

 digitalWrite(STEP_PIN2, HIGH); delayMicroseconds(DELAY_ST);

 digitalWrite(STEP_PIN2, LOW); delayMicroseconds(DELAY_ST);

 lcd.setCursor(7, 1); lcd.print(teta2); Serial.println(teta2);

 }

 else { statoEmergenza=HIGH; break;}

 }

 }

}

void attivaLampada(int stato) {

 if (stato==HIGH) { digitalWrite(LED_PIN, HIGH);}

 if (stato==LOW) { digitalWrite(LED_PIN, LOW);}

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 351

ESERCIZIO TAGLIO LASER SCARA 3 ASSI

Simulare un TAGLIO LASER SCARA dotato di 3 motori stepper.

 ST0  movimento verticale (asse Z) con vite T8 Trapezoidale Senza Fine Ø8 Mm Pitch 2mm 1 Principio

 ST1  movimento angolare link1 (motore con rapporto riduzione 1.8:1  360 step per giro)
 ST2  movimento angolare link2 (motore con rapporto riduzione 1.8:1  360 step per giro)

Il robot deve raggiungere la posizione P(X,Y,Z) e attivare il LASER per 1s.

Il laser viene attivato emndiante un rele’.

Quando il laser è attivo viene acceso un led giallo.

Al termine il robot torna alla posizone di riposo iniziale.

simulabile su “wokwi.com”

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 352

CODICE
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 20, 4);

// Nema 17 200 passi per giro accoppiato a
// vite T8 Trapezoidale Senza Fine Ø8 Mm Pitch 2mm 1 Principio
#define DIR_PIN0 11
#define STEP_PIN0 12 // gearRatio 1:1 --> 1 giro= 200 step --> 2mm di spostamento
#define DIR_PIN1 8
#define STEP_PIN1 9 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)
#define DIR_PIN2 3
#define STEP_PIN2 4 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)
#define DELAY_ST 2000 // 2000 micros
#define DELAY_STZ 1000 // 2000 micros

#define LASER_PIN 2
#define LASER_PIN_R 1

int idMotor; // 1,2 ...

void setup() {
 pinMode(DIR_PIN0, OUTPUT);
 pinMode(STEP_PIN0, OUTPUT);
 pinMode(DIR_PIN1, OUTPUT);
 pinMode(STEP_PIN1, OUTPUT);
 pinMode(DIR_PIN2, OUTPUT);
 pinMode(STEP_PIN2, OUTPUT);
 pinMode(LASER_PIN, OUTPUT);
 pinMode(LASER_PIN_R, OUTPUT);

 lcd.init();
 lcd.backlight();
 lcd.setCursor(0, 0); lcd.print("Z(mm)");
 lcd.setCursor(0, 1); lcd.print("v(mm/s)");
 delay(1000);
}

void loop() {

 lcd.setCursor(7, 1);
 // rotazione ORARIA 30°
 movelinkTo(1,30,HIGH);
 delay(1000);

 movelinkTo(2,90,HIGH);
 delay(1000);

 movezTo(30,LOW);
 delay(1000);

 digitalWrite(LASER_PIN, HIGH);
 digitalWrite(LASER_PIN_R, HIGH);
 delay(2000);
 digitalWrite(LASER_PIN, LOW);
 digitalWrite(LASER_PIN_R, LOW);

 movelinkTo(2,90,LOW);
 delay(1000);

 movelinkTo(1,30,LOW);
 delay(1000);

 movezTo(30,HIGH);
 delay(1000);

}

void movelinkTo(int id, int postion, int orientation) {
 if (id==1) {
 digitalWrite(DIR_PIN1, orientation);
 for (int i = 0; i < postion; i++) {
 digitalWrite(STEP_PIN1, HIGH); delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN1, LOW); delayMicroseconds(DELAY_ST);

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 353

 }
 }
 else if (id==2) {
 digitalWrite(DIR_PIN2, orientation);
 for (int i = 0; i < postion; i++) {
 digitalWrite(STEP_PIN2, HIGH); delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN2, LOW); delayMicroseconds(DELAY_ST);
 }
 }

}

// spostamento relativo in mm
void movezTo(int z, int orientation) {
 int t0= millis();
 int t= millis();

 // calcolo numero di step necessari (1mm=100 step)
 int step = z * 100;
 digitalWrite(DIR_PIN0, orientation);
 for (int i = 0; i < step; i++) {
 /* questo codice rallenta velocità motore dopo 2-3 volte !!!!
 float cz= (i+1)/100;
 if ((millis() - t) >= 500) {
 t = millis();
 if (orientation==LOW) {lcd.setCursor(6, 0); lcd.print("-");}
 else {lcd.setCursor(6, 0); lcd.print("+");}
 lcd.setCursor(7, 0); lcd.print(cz);

 // calcolo rpm -> 1 giro = 200 step
 float vel = 1000 * cz / (millis() - t0);
 lcd.setCursor(8, 1); lcd.print(vel);

 }
 */
 digitalWrite(STEP_PIN0, HIGH); delayMicroseconds(DELAY_STZ);
 digitalWrite(STEP_PIN0, LOW); delayMicroseconds(DELAY_STZ);
 }

 float cz= step/100;
 if (orientation==LOW) {lcd.setCursor(6, 0); lcd.print("-");}
 else {lcd.setCursor(6, 0); lcd.print("+");}
 lcd.setCursor(7, 0); lcd.print(cz);

 float vel = 1000* cz / (millis() - t0);
 lcd.setCursor(8, 1); lcd.print(vel);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 354

ROBOT SCARA

Il robot SCARA (Selective Compliance Assembly Robot Arm) è stato concepito per operazioni veloci e precise.

La cinematica del robot SCARA è stata sviluppata all’inizio degli anni ’70 in seguito all’osservazione secondo la quale i cicli di

movimento più frequenti sono realizzabili con 4 assi.

Il vantaggio che presenta questo tipo di robot rispetto ad altri è dovuto al fatto che per sollevare un pezzo il movimento avviene

su un solo asse. Il che ne semplifica la struttura rendendolo più affidabile.

Perciò, laddove è possibile la movimentazione di parti su un livello, i vantaggi dello SCARA prevalgono sensibilmente rispetto a

quelli delle altre cinematiche.

Il robot Scara presenta quindi 4 gradi di libertà. In un piano orizzontale si muovono 2 bracci articolati, incernierati ad una

estremità con un asse verticale fisso, mentre all’altra estremità libera si trova 1 asse Z, il quale può muoversi sia verticalmente

che ruotare intorno al proprio asse.

MOVIMENTI E ANGOLI DEL ROBOT SCARA

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 355

APPLICAZIONI TIPICHE DEL ROBOT SCARA

I robot SCARA offrono il massimo delle prestazioni di ripetibilità rispetto a tutti i tipi di robot.

Gli errori che si verificano nella posizione X-Y sono dovuti all'utilizzo di due motori in J1 e J2.

Gli altri tipi di robot utilizzano tre o più motori per contribuire alla posizione X-Y.

Il numero dei motori è direttamente proporzionale agli errori che potrebbero verificarsi.

L'eccellente ripetibilità è un elemento fondamentale per le piccole applicazioni di assemblaggio, in cui occorre rispettare

tolleranze inferiori a diversi micron. Ad esempio, può trattarsi dell'inserimento dei connettori nelle schede elettroniche o dello

spostamento di un ago in una piccola fessura per la distribuzione.

Uno SCARA può permettere raggi di azione da 100 mm a 1.200 mm, con capacità di carico pagante da 1 kg a 200 kg.

END EFFECTOR

Link 1

Link 2

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 356

ESERCIZIO ROBOT SCARA

Simulare il movimento di un robot SCARA dotato di 3 motori stepper e 2 servomotori:

 ST0  movimento verticale (asse Z) con vite T8 Trapezoidale Senza Fine Ø8 Mm Pitch 2mm 1 Principio

 ST1  movimento angolare link1 (motore con rapporto riduzione 1.8:1  360 step per giro)
 ST2  movimento angolare link2 (motore con rapporto riduzione 1.8:1  360 step per giro)
 SV1 movimento polso pinza 0-180°
 SV2 movimento griffe pinza 0°=aperta, 180°=chiusa

Link1  102mm
Link2  80

Posizione a riposo della pinza chiusa Z=120mm dal piano di appoggio.

Visualizzare la posizione verticale e la velocità di spostamento su un LCD 16x2 I2C.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 357

simulabile su “wokwi.com”

-30°

90°

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 358

CODICE

#include <LiquidCrystal_I2C.h>
#include <Servo.h>

LiquidCrystal_I2C lcd(0x27, 20, 4);
Servo servoPolso; // create servo object to control a servo
Servo servoPinza; // create servo object to control a servo

// Nema 17 200 passi per giro accoppiato a
// vite T8 Trapezoidale Senza Fine Ø8 Mm Pitch 2mm 1 Principio
#define DIR_PIN0 11
#define STEP_PIN0 12 // gearRatio 1:1 --> 1 giro= 200 step --> 2mm di spostamento
#define DIR_PIN1 8
#define STEP_PIN1 9 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)
#define DIR_PIN2 3
#define STEP_PIN2 4 // set gearRatio 1.8:1 to get 1° for 1 step (1.8=360/200)
#define DELAY_ST 2000 // 2000 micros
#define DELAY_STZ 1000 // 2000 micros
#define LED_PIN 2
#define POLSO_PIN 5
#define PINZA_PIN 6
int idMotor; // 1,2 ...

void setup() {
 pinMode(DIR_PIN0, OUTPUT);
 pinMode(STEP_PIN0, OUTPUT);
 pinMode(DIR_PIN1, OUTPUT);
 pinMode(STEP_PIN1, OUTPUT);
 pinMode(DIR_PIN2, OUTPUT);
 pinMode(STEP_PIN2, OUTPUT);
 pinMode(LED_PIN, OUTPUT);
 pinMode(POLSO_PIN, OUTPUT);
 pinMode(PINZA_PIN, OUTPUT);
 servoPolso.attach(POLSO_PIN); servoPolso.write(0);
 servoPinza.attach(PINZA_PIN); servoPinza.write(0); // pinza aperta
 lcd.init();
 lcd.backlight();
 lcd.setCursor(0, 0); lcd.print("Z(mm)");
 lcd.setCursor(0, 1); lcd.print("v(mm/s)");
 delay(1000);
}

void loop() {
 lcd.setCursor(7, 1);
 // rotazione ORARIA 30°
 movelinkTo(1,30,HIGH);
 delay(1000);
 movelinkTo(2,90,HIGH);
 delay(1000);
 movezTo(30,LOW);
 delay(1000);
 digitalWrite(LED_PIN, HIGH);
 servoPolso.write(90); // polso ruotato di 90°
 delay(500);
 servoPinza.write(180); // pinza chiusa
 delay(2000);
 digitalWrite(LED_PIN, LOW);
 movelinkTo(2,90,LOW);
 delay(1000);
 movelinkTo(1,30,LOW);
 delay(1000);
 servoPolso.write(0);
 delay(500);
 servoPinza.write(0); // pinza aperta
 delay(1000);

 movezTo(30,HIGH);
 delay(1000);
}

void movelinkTo(int id, int postion, int orientation) {
 if (id==1) {
 digitalWrite(DIR_PIN1, orientation);

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 359

 for (int i = 0; i < postion; i++) {
 digitalWrite(STEP_PIN1, HIGH); delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN1, LOW); delayMicroseconds(DELAY_ST);
 }
 }
 else if (id==2) {
 digitalWrite(DIR_PIN2, orientation);
 for (int i = 0; i < postion; i++) {
 digitalWrite(STEP_PIN2, HIGH); delayMicroseconds(DELAY_ST);
 digitalWrite(STEP_PIN2, LOW); delayMicroseconds(DELAY_ST);
 }
 }
}

// spostamento relativo in mm
void movezTo(int z, int orientation) {
 int t0= millis();
 int t= millis();

 // calcolo numero di step necessari (1mm=100 step)
 int step = z * 100;
 digitalWrite(DIR_PIN0, orientation);
 for (int i = 0; i < step; i++) {
 /* questo codice rallenta velocità motore dopo 2-3 volte !!!!
 float cz= (i+1)/100;
 if ((millis() - t) >= 500) {
 t = millis();
 if (orientation==LOW) {lcd.setCursor(6, 0); lcd.print("-");}
 else {lcd.setCursor(6, 0); lcd.print("+");}
 lcd.setCursor(7, 0); lcd.print(cz);
 // calcolo rpm -> 1 giro = 200 step
 float vel = 1000 * cz / (millis() - t0);
 lcd.setCursor(8, 1); lcd.print(vel);
 }
 */
 digitalWrite(STEP_PIN0, HIGH); delayMicroseconds(DELAY_STZ);
 digitalWrite(STEP_PIN0, LOW); delayMicroseconds(DELAY_STZ);
 }

 float cz= step/100;
 if (orientation==LOW) {lcd.setCursor(6, 0); lcd.print("-");}
 else {lcd.setCursor(6, 0); lcd.print("+");}
 lcd.setCursor(7, 0); lcd.print(cz);

 float vel = 1000* cz / (millis() - t0);
 lcd.setCursor(8, 1); lcd.print(vel);
}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 360

ROBOT ANTROPOMORFO

I robot antropomorfi sono robot con movimenti su 5 o più assi che ricordano nella forma e nelle possibilità di articolazione il

braccio umano. Per questo motive anche denominati bracci robotici antropomorfi.

Esempio piccolo robot hobbistico.

L1

L2
L3

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 361

CINEMATICA DIRETTA ED INVERSA ROBOT A 3 LINK

NB: l’angolo  deve essere assegnato (dato di input noto).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 362

CODICE G PER LA PROGRAMMAZIONE CNC

IL CODICE G IN SINTESI

I produttori di tutto il mondo utilizzano la programmazione CNC per controllare gli utensili di una macchina

e produrre pezzi. Il cuore di questo processo di produzione automatizzato è costituito da una serie di

istruzioni che indicano a un macchinario CNC dove e come muoversi.

Queste istruzioni sono chiamate Codice G (G-Code).

Il codice G è stato creato negli anni ’60 dall’Electronics Industry Association (EIA).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 363

Sebbene il linguaggio ufficiale sia documentato come RS-274D, tutti si riferiscono ad esso come codice G.

Perché?

Molti dei termini o dei singoli frammenti di codice che compongono questo linguaggio iniziano con la

lettera G.

Anche se il codice G dovrebbe essere uno standard universale, scoprirai che molte aziende produttrici di

macchine CNC hanno sviluppato il loro gusto unico. Tutti apprezziamo un buon gelato, ma una Haas

potrebbe essere alla fragola e una Tormach al cioccolato. A causa di questa differenza nei gusti del codice G,

è fondamentale capire come il proprio macchinario utilizza il codice G.

Perché esistono differenze nei gusti del codice G? La questione è legata alle capacità di ogni macchina.

Prendiamo una macchina in grado di elaborare una rotazione del sistema di coordinate in base agli input

della sonda. Avrai bisogno di una serie di comandi in codice G in grado di attivare o disattivare questa

rotazione. Un’altra macchina che non ha questa capacità di regolazione non avrà bisogno di questo codice G.

In caso di dubbi, fai sempre riferimento alla documentazione della tua macchina CNC mentre leggi il resto

di questo articolo. Ti illustreremo le nozioni di base, ma non è detto che la tua macchina non debba seguire

un percorso leggermente diverso per raggiungere la stessa destinazione finale.

BLOCCHI DI CODICE G

Gli standard del codice G sono stati pubblicati all’epoca in cui le macchine avevano una piccola quantità di

memoria. A causa di questa limitazione di memoria, il codice G è un linguaggio estremamente compatto e

conciso che a prima vista potrebbe sembrare arcaico. Prendiamo ad esempio questa riga di codice:

G01 X1 Y1 F20 T01 M03 S500

In questa singola riga, stiamo dando alla macchina una serie di istruzioni:

 G01 – Esegue un avanzamento lineare

 X1/Y1 – Si sposta su queste coordinate X e Y

 F20 – Spostamento con avanzamento 20

 T01 – Utilizzo dell’utensile 1 per portare a termine il lavoro

 M03 – Aziona il mandrino

 S500 – Imposta una velocità del mandrino pari a 500

Linee multiple di codice G come queste si combinano per formare un programma CNC completo.

Le macchine CNC leggono il codice una riga alla volta, da sinistra verso destra e dall’alto verso il basso,

come se leggessero un libro.

Ogni serie di istruzioni si trova su una linea separata o su un blocco.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 364

PROGRAMMI IN CODICE G

L’obiettivo di ogni programma di codice G è quello di produrre pezzi nel modo più sicuro ed efficiente

possibile. Per raggiungere questo obiettivo, in genere, i blocchi di codice G sono disposti in un ordine

particolare come il seguente:

1. Avvia il programma CNC.
2. Carica l’utensile richiesto.
3. Attiva il mandrino.
4. Attiva il refrigerante.
5. Spostati in una posizione al di sopra del pezzo.
6. Avvia il processo di lavorazione.
7. Disattiva il refrigerante.
8. Disattiva il mandrino.
9. Allontanati dal pezzo verso una posizione sicura.
10. Termina il programma CNC.

Questo flusso è un programma semplice che utilizza un solo strumento per un’unica operazione. In pratica,

in genere si ripetono i passaggi da 2 a 9. Ad esempio, il programma in codice G riportato di seguito

comprende tutti i blocchi di codice precedenti con sezioni ripetute dove necessario:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 365

MODALI E CODICI DI INDIRIZZO

Come altri linguaggi di programmazione, il codice G può ripetere un’azione all’infinito finché non viene

interrotta. Questo processo di looping utilizza un codice modale, che agisce fino a quando non viene

disattivato o modificato con un altro codice modale. Ad esempio, M03 è un codice modale che fa girare un

mandrino all’infinito finché non gli ordini di fermarsi con M05. Ora, aspetta un attimo. Questa parola

(ricorda: una parola è un piccolo pezzo di codice) non inizia con la G, ma è comunque un codice G. Le

parole che iniziano con una M sono codici macchina e attivano o disattivano funzioni della macchina come

il refrigerante, il mandrino e i morsetti. Ne elencheremo alcuni comuni nella prossima sezione, ma puoi

trovare un elenco dei codici M della tua macchina nella sua documentazione.

Il codice G include anche un elenco completo di codici di indirizzo. Puoi considerarli come il dizionario del

codice G che definisce particolari comportamenti. I codici di indirizzo iniziano con la lettera di

designazione, come G, e seguono con una serie di numeri. Ad esempio, X2 definisce un codice di indirizzo

per la coordinata X, dove 2 è il valore sull’asse X su cui spostare la macchina.

L’elenco completo dei codici di indirizzo comprende:

A un programma in codice G possono essere aggiunti diversi codici di caratteri speciali. In genere vengono

utilizzati per avviare un programma, eliminare il testo o ignorare i caratteri. Includono:

 % Inizia o termina un programma CNC

 () Definisce un commento scritto da un operatore CNC; occasionalmente deve essere scritto tutto in maiuscolo.

 / Ignora tutti i caratteri che vengono dopo lo slash

 ; Determina la fine di un blocco di codice, non visualizzabile in un editor di testo.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 366

PANORAMICA DEI CODICI G E DEI CODICI M

I codici G e M costituiranno la maggior parte del tuo programma CNC. I codici che iniziano con G

preparano la tua macchina a eseguire un tipo specifico di movimento. I codici G più comuni che si

incontrano più volte in ogni programma CNC sono:

G0 – MOVIMENTO RAPIDO

Questo codice indica a una macchina di spostarsi il più velocemente possibile verso una posizione di

coordinate specificata. G0 sposterà la macchina asse per asse, il che significa che si muoverà prima lungo

entrambi gli assi e terminerà lo spostamento su quello che non è in posizione. Nella figura seguente è

mostrato un esempio di questo movimento:

G1 – MOVIMENTO LINEARE

Questo codice indica a una macchina di muoversi in linea retta verso una posizione coordinata con un

avanzamento definito. Ad esempio, G1 X1 Y1 F32 sposterà la macchina verso le coordinate X1, Y1, con un

avanzamento di 32.

G2, G3 – Arco in senso orario, arco in senso antiorario

Questi codici indicano alla macchina di muoversi in un arco verso una coordinata di destinazione. Due

coordinate aggiuntive, I e J, definiscono la posizione centrale dell’arco, come mostrato di seguito:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 367

G17, G18, G19 – DESIGNAZIONI DEI PIANI

Questi codici definiscono su quale piano verrà lavorato un arco. Per impostazione predefinita, la tua

macchina CNC utilizzerà G17, che è il piano XY. Gli altri due piani sono mostrati nell’immagine

sottostante:

G40, G41, G42 – COMPENSAZIONE DEL DIAMETRO DELL’UTENSILE

Questi codici definiscono la compensazione del diametro della lama, o CDC, che permette a una macchina

CNC di posizionare l’utensile a sinistra o a destra di un percorso definito.

Un registro D memorizza la compensazione per ogni utensile.

G43 – Compensazione della lunghezza dell’utensile

Questo codice definisce la lunghezza dei singoli utensili utilizzando l’altezza dell’asse Z.

Ciò consente alla macchina CNC di capire dove si trova la punta di un utensile rispetto al pezzo su cui sta

lavorando.

Un registro definisce le compensazioni della lunghezza dell’utensile, dove H è l’offset della lunghezza

dell’utensile e Z è la sua lunghezza.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 368

G54 – COMPENSAZIONE DI LAVORAZIONE

Questo codice viene utilizzato per definire una compensazione, che determina la distanza tra le coordinate

interne di una macchina e l’origine di un pezzo.

Nella tabella sottostante, solo G54 ha una definizione di compensazione.

Tuttavia, si possono programmare più compensazioni se un lavoro richiede la lavorazione contemporanea di

più pezzi.

CODICI M

I codici M sono codici macchina che possono differire tra le macchine CNC.

Questi codici controllano le funzioni della macchina CNC, come le direzioni del refrigerante e del mandrino.

Alcuni dei codici M più comuni sono i seguenti:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 369

CICLI FISSI IN CODICE G

L’ultimo aspetto del codice G da toccare è quello dei cicli fissi. Sono simili ai metodi o alle funzioni della

programmazione informatica.

Consentono di eseguire un’azione complicata con poche righe di codice, senza dover digitare tutti i dettagli.

Prendiamo, ad esempio, il seguente ciclo fisso. In questo caso stiamo dicendo allo strumento CNC di creare

un foro con una perforatrice in sole due righe di codice sulla sinistra.

La stessa azione richiede oltre 20 righe di regolare codice G.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 370

⌂

ELETTROPNEUMATICA

La tecnologia pneumatica è basata sull’utilizzo di un gas compresso (aria) per produrre un movimento meccanico.

Questa tecnologia appartiene al campo della tecnologia dei fluidi, assieme all’oleodinamica. Tuttavia, a differenza di

quest’ultima che utilizza i fluidi come mezzo propulsivo, la pneumatica utilizza l’aria compressa che è un’alternativa economica

ed ecologica per la la movimentazione di macchine ed utensili.

Nella pneumatica il passaggio di aria compressa che genera un movimento meccanico avviene tramite comandi di tipo

meccanico. Se si utilizzano elettrovalvole e segnali di comando elettrici si parla di ELETTROPNEUMATICA.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 371

ELETTROVALVOLE PNEUMATICHE

Una elettrovalvola (o valvola a solenoide) è una valvola che utilizza la forza elettromagnetica per funzionare.

Quando una corrente elettrica viene fatta passare attraverso la bobina del solenoide (generalmente alimentata a 24V), viene

generato un campo magnetico che provoca il movimento di un perno metallico che permette il passaggio dell’aria da una via ad

un’altra.

Schema funzionamento della bobina per una valvola unidirezionale

Schema funzionamento delle 2 bobine di una elettrovalvola 4/2 bistabile con piattello scorrevole

solenoide
a 24V

 valvola 5/2  5 vie e 2 posizioni

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 372

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 373

COMANDO ATTUATORI ELETTROPNEUMATICI CON ARDUINO

Utilizzando le valvole elettropneumatiche è possibile realizzare automatismi controllabili da un microcontrollore come Arduino.

Le bobine dell’elettrovalvola generalmente vanno alimentate a 24V per consentirne l’attivazione e di conseguenza il passaggio

dell’aria 14 (uscita pistone) oppure 12 (rientro cilindro).

Per avviare le bobine si possono utilizzare dei relè comandati da Arduino tramite una uscita digitale a 5V.

Tramite il contatto NA del relè si connette la bobina dell’elettrovalvola al generatore 24V.

L’attivazione della bobina Y1 (con la Y2 disattivata) avvia la fase A+ (uscita del pistone) mentre l’attivazione della bobina Y2 (con

la Y1 disattivata) avvia la fase A- (rientro del pistone).

La valvola 5/2, rispetto alla 4/2 consente di avere due scarichi distinti sull’andata e il ritorno del pistone per permettere la

regolazione della la velocità in modo differenziato.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 374

SENSORI MAGNETICI (REED SWITCHES)

Sono degli interruttori che si attivano in presenza di un campo magnetico.

Si trovano sotto forma di una capsula di vetro con due steli metallici alle estremità o completamente avvolti in un case

plastico/metallico che garantisce una maggiore resistenza.

In campo elettropneumatico vengono impiegati abbinati a cilindri magnetici per rilevare la posizione del pistone (dotato di fascia

magnetica) all’interno del cilindro funzionando così da FINECORSA.

Nel caso di sensori a due fili è necessario alimentare il sensore tramite un carico resistivo per limitare la corrente a pochi mA

quando il circuito è chiuso (presenza di campo magnetico).

In campo industriale in generale la tensione di alimentazione varia da 4 a 24V con una corrente massima di 50mA.

Se il sensore è dotato di led in generale ha già integrata una resistenza limitatrice.

Il led si accende in presenza di un campo magnetico (presenza pistone con anello magnetico).

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 375

ESERCITAZIONE SEQUENZA PNEUMATICA

Implementare la sequenza logica “A+/pausa 5s/A-“ con un attuare pneumatico comandato da una elettrovalvola 5/2 (24V)

tramite una scheda Arduino che utilizza 2 relè a 5V.

L’attuatore pneumatico è dotato di un sensore di prossimità (a1) a 2 fili senza resistenza interna (24V).

La sequenza viene avviata premendo il pulsante START solo se è attivo un interruttore generale.

Le bobine dell’elettrovalvola vanno simulate tramite 2 relè mentre il finecorsa “a1” con un pulsante.

SCHEMA THINKERCAD

generale

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 376

CODICE

int statoStart;
int statoAccensione;
int statoA1;
bool sequenzaAttiva=false;

void setup()
{
 Serial.begin(9600);
 pinMode(3, INPUT); // interruttore generale
 pinMode(4, INPUT); // pulsante START
 pinMode(5, OUTPUT); // bobina Y1
 pinMode(6, OUTPUT); // bobina Y2
 pinMode(8, INPUT); // finecorsa a1
}

void loop()
{
 statoAccensione= digitalRead(3);

 statoStart= digitalRead(4);
 if (statoStart== HIGH && statoAccensione== HIGH) {
 sequenzaAttiva= true;
 Serial.println("Avvio sequenza");
 }

 if (sequenzaAttiva== true && statoAccensione== HIGH) {
 digitalWrite(5, HIGH);
 digitalWrite(6, LOW);
 Serial.println("A+");

 statoA1= digitalRead(8);
 // finchè il finecorsa a1 non passa ad alto attendo
 while (statoA1== LOW) {
 statoA1= digitalRead(8);
 delay(100);
 }
 Serial.println("a1 ALTO");
 Serial.println("Pausa 5s");
 delay(5000);

 digitalWrite(5, LOW);
 digitalWrite(6, HIGH);
 Serial.println("A-");
 Serial.println("Pausa 1s"); // pausa per garantire rientro pistone
 delay(1000);

 Serial.println("Disattivo relè");
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 Serial.println("Fine sequanza");

 sequenzaAttiva= false;
 }

}

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 377

FORMULE ELEMENTI CIRCUITALI IDEALI

Gli elementi elementari del circuito - il resistore, il condensatore e l'induttore - impongono relazioni lineari tra tensione e

corrente.

RESISTORE

Figura 1. Resistenza.

Il resistore è di gran lunga l'elemento circuitale più semplice. In un resistore la tensione è proporzionale alla corrente, con la

costante di proporzionalità , noto come la resistenza .

La resistenza ha unità di ohm, denotate dal nome dello scienziato elettrico tedesco Georg Ohm . Quando la resistenza è

positiva, come nella maggior parte dei casi, un resistore consuma energia. Il consumo energetico istantaneo di un resistore può

essere scritto in due modi.

Quando la resistenza si avvicina all'infinito, abbiamo quello che è noto come un circuito aperto : nessuna corrente scorre ma una

tensione diversa da zero può apparire attraverso il circuito aperto. Quando la resistenza diventa zero, la tensione va a zero per

un flusso di corrente diverso da zero. Questa situazione corrisponde ad un cortocircuito . Un superconduttore realizza

fisicamente un cortocircuito.

CONDENSATORE

Figura 2. Condensatore.

Il condensatore immagazzina la carica e la relazione tra la carica immagazzinata e la tensione risultante è

La costante di proporzionalità, la capacità, ha unità di farad (F), e prende il nome dal fisico sperimentale inglese Michael

Faraday .

Poiché la corrente è la velocità di variazione della carica, la relazione vi può essere espressa in forma differenziale o integrale.

Se la tensione ai capi di un condensatore è costante, la corrente che scorre in esso è uguale a zero. In questa situazione, il

condensatore è equivalente a un circuito aperto. La potenza consumata/prodotta da una tensione applicata ad un condensatore

dipende dal prodotto della tensione per la sua derivata.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 378

Questo risultato significa che il dispendio energetico totale di un condensatore fino al momento t è sinteticamente dato da

Questa espressione presuppone l' assunto fondamentale della teoria dei circuiti: tutte le tensioni e le correnti in qualsiasi

circuito erano pari a zero nel lontano passato (

INDUTTORE

Figura 3. Induttore.

L'induttore immagazzina il flusso magnetico, con induttori di valore maggiore in grado di immagazzinare più flusso. L'induttanza

ha unità di henry (H) e prende il nome dal fisico americano Joseph Henry . Le forme differenziali e integrali della relazione

vi dell'induttore sono

La potenza consumata/prodotta da un induttore dipende dal prodotto della corrente dell'induttore e della sua derivata

e il suo dispendio energetico totale fino al momento è dato da

SORGENTI

Figura 4. La sorgente di tensione a sinistra e la sorgente di corrente a destra sono come tutti gli elementi del circuito in quanto

hanno una relazione particolare tra la tensione e la corrente definita per loro.

Per la sorgente di tensione: V= Vs

Per la sorgente di corrente: I= Is

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 379

IL RESISTORE PULL-UP NEI MCU

La resistenza di pull-up è molto comune e la si vede spesso nei circuiti digitali. È semplicemente una resistenza collegata da un

ingresso a Vdd , l'alimentazione positiva del circuito.

Ad esempio sugli ingressi digitali di un Arduino. O sugli ingressi di chip digitali come il circuito integrato della serie 4000 .

Le resistenze di pull-up servono a garantire che il pin di ingresso sia in stato ALTO quando il pulsante non è premuto. Senza di

esse, l'ingresso sarà flottante e si rischia che cambi casualmente tra ALTO e BASSO, captando il rumore presente nell'aria.

Come scegliere il valore di un resistore pull-up

Regola 1: Il valore non può essere troppo alto.

Maggiore è il valore di pull-up, minore è la tensione sull'ingresso. È importante che la tensione sia sufficientemente alta da

essere percepita dal chip come un ingresso HIGH, o logico 1.

Ad esempio, se si utilizza un CD4017 con un alimentatore da 10 V, è necessario un minimo di 7 V in ingresso affinché venga

visualizzato come HIGH.

Regola 2: Ma non può essere nemmeno troppo piccolo.

Se ad esempio si sceglie 100 Ω, il problema è che quando si preme il pulsante scorre molta corrente.

Con un alimentatore da 9 V, si ottengono 9 V su 100 Ω, ovvero 90 mA. È uno spreco di energia inutile, ma significa anche che il

resistore deve sopportare 0,81 W. La maggior parte dei resistori può gestire solo fino a 0,25 W.

Regola pratica

La regola pratica quando si sceglie un resistore pull-up è quella di scegliere un valore di resistenza che sia almeno 10 volte

inferiore all'impedenza di ingresso (o alla resistenza interna) del pin.

Spesso, un valore di pull-up di 10 kΩ è sufficiente.

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 380

COME FUNZIONANO I RESISTORI PULL-UP?

Si può pensare al pin di ingresso di un circuito integrato (IC) come a un resistore collegato a massa. Questa è

chiamata impedenza di ingresso :

Questi due resistori costituiscono un partitore di tensione . Osservando il circuito standard di un partitore di tensione, si può

notare che il resistore di pull-up è R1 e l'impedenza di ingresso è R2:

È possibile utilizzare la formula del partitore di tensione per trovare la tensione sul pin di ingresso quando il pulsante non è

premuto:

Di seguito, ho rinominato i componenti della formula per adattarli all'esempio di pull-up. La tensione di ingresso è Vdd del

nostro esempio di pull-up. E la tensione di uscita è la tensione sul pin di ingresso. Quindi la formula diventa:

 Automazione con Arduino & Thinkercad & Wokwi – prof. Delbarba Luca - Pag. 381

Esempio di calcolo

Supponiamo che il tuo chip abbia un'impedenza di ingresso di 1 MΩ (da 100 kΩ a 1 MΩ è normale per molti chip). Se

l'alimentatore è da 9 V e scegli un valore di resistenza di pull-up di 10 kΩ, qual è la tensione che ottieni sul pin di ingresso?

Sul pin di ingresso si ottengono 8,9 V, più che sufficienti per fungere da ingresso HIGH.

In generale, se si segue la regola pratica di utilizzare un resistore pull-up che non sia più di dieci volte inferiore all'impedenza di

ingresso, si avrà la certezza di avere sempre almeno il 90% della tensione VDD sul pin di ingresso.

COME TROVARE L'IMPEDENZA DI INGRESSO DI UN CIRCUITO INTEGRATO

È possibile misurare facilmente l'impedenza di ingresso di un chip. Impedenza è in realtà un termine che indica una resistenza

che può variare a seconda della frequenza. Ma in questo caso di pull-up, abbiamo a che fare solo con correnti continue .

Collegare un resistore pull-up, ad esempio da 10 kΩ, all'ingresso del chip e misurare la tensione sull'ingresso.

Supponiamo che durante la misurazione si ottengano 8,5 V.

Usa questo per trovare la corrente che scorre attraverso il resistore usando la legge di Ohm . La caduta di tensione ai capi del

resistore è 9 V – 8,5 V = 0,5 V, quindi ottieni:

C'è un flusso di 0,05 mA attraverso il resistore, e quindi anche attraverso il pin di ingresso fino a terra. Ancora una volta,

utilizziamo la legge di Ohm per trovare la resistenza di qualcosa con una caduta di tensione di 8,5 V e una corrente di 0,05 mA:

L'impedenza di ingresso è di 170 kΩ. Ciò significa che la resistenza di pull-up per questo ingresso non deve superare i 17 kΩ.

https://www.build-electronic-circuits.com/wp-content/uploads/2021/03/how-to-find-input-impedance.png

